Lime Microsystems Limited

Surrey Technology Centre Occam Road The Surrey Research Park Guildford, Surrey GU2 7YG United Kingdom

 Tel:
 +44 (0) 1483 685 063

 e-mail:
 enquiries@limemicro.com

LimeSDR-QPCIe v1.2 Quick Start Manual

- Hardware and software description-

REVISION HISTORY

Date	Version	Description of Revisions
4/10/2017	0.00	Initial version
03/11/2017	0.01	Board overview, LEDs, PMOD#A, PMOD#B, LMS7002#1, LMS7002#2,
		DAC#1, DAC#2, ADC tables filled, board component description figures
		added, clock distribution, power distribution and temperature control
		sections filled
08/12/2017	0.02	New sections: SDRAM, GNSS, RTC, FPGA configuration, Temperature
		sensor, User I/O, RF Loopback Control, Main clock sources, Clock buffer
		source selection, VCTCXO clock tunning, Windows PCIe driver
		installation procedure, Linux PCIe drivers, Obtaining FPGA programming
		files.

The following table shows the revision history of this document:

Table of Contents

RI	EVISION H	ISTORY	2
1.	INTRO	DUCTION	6
2.	LIMES	DR-QPCIE BOARD KEY FEATURES	7
2.1	LimeSDR	-QPCle Board Overview	
2.2	LimeSDR	-QPCIe Board Architecture	
2.	2.1 FP	GA configuration	
2.	2.2 Ma	ain components	
	2.2.2.1	LMS7002M RF transceiver	
	2.2.2.2	SDRAM	
	2.2.2.3	USB 3.0 Controller	
	2.2.2.4	ADC	
	2.2.2.5	DACs	
	2.2.2.6	GNSS receiver	
	2.2.2.7	RTC	
	2.2.2.8	Temperature sensor	
2.	2.3 Co	nnectors	
	2.2.3.1	PCI Express connector	
	2.2.3.2	LVDS connector	
	2.2.3.3	PMOD connectors	
2.	2.4 Lov	w Speed Interfaces	
	2.2.4.1	SPI interfaces	
	2.2.4.2	I2C interfaces	
	2.2.4.3	UART	45
2.	2.5 Us	er I/O	
	2.2.5.1	FPGA switch	
	2.2.5.2	Indication LEDs	
2.	2.6 RF	Loopback Control	
2.	2.7 Bo	ard Temperature Control	
2.	2.8 Clo	ock Distribution	
	2.2.8.1	Main clock sources	53
	2.2.8.2	Clock buffer source selection	55
	2.2.8.3	VCTCXO clock tuning	
2.	2.9 Po	wer Distribution	57
3.	GETTI	NG STARTED WITH LIMESDR-USB	60
3.1	Launchin	g LimeSuiteGUI and Connecting to the LimeSDR-USB Board	
3.2	Loading	and Saving Register Settings	61
3.3	Quick Te	st	62
3.4	Changing	g TX / RX Frequency	63

3.5	Changing Receiver Gain	64
3.6	Changing Transmitter Output Signal Gain	65
3.7	Load Waveform for Tx Path	
3.8	Digital Loopback Enable	67
3.9	Run FTT Viewer	
3.10	Manual Calibration of RX Path	
3.11	Manual Calibration of TX Path	73
3.12	Clock Configuration	77
3.	12.1 VCTCXO Tuning	77
3.	12.2 Tuning VCTCXO Using Frequency Synthesizer (ADF4002)	
3.	12.3 Tuning VCTCXO using DAC	
3	12.4 VCTCXO Calibration Procedure	79
3. 2	12.5 Drogrammable Clask Consister (CE2E1C) Configuration	
3.	12.5 Programmable Clock Generator (SIS3S1C) Configuration	80
3.13	Reading Board Temperature	
4.	DRIVERS INSTALLATION	83
4.1	Windows USB Driver Installation Procedure	
4.2	Linux USB Drivers	
4.3	Windows PCIe driver installation procedure	
4.4	Linux PCIe drivers	
-	LIMECOD ODCIE DOADD DDOCDAMMINC	01
э.	LIMESDR-QFCIE BOARD FROGRAMMING	
5.1	Updating FX3 Firmware Using LimeSuiteGUI	91
5.2	Updating USB3 Microcontroller Firmware in Bootloader Mode	
5.	2.1 Uploading Firmware to SPI FLASH Memory	
5.	2.2 Uploading Firmware to the FX3 RAM	
5.3	Obtaining FPGA programming files	94
с. С	3.1 PCIe core generation	۵۸
5.	5211 Signing LID	
	5.3.1.1 Signifig UP	
	5.3.1.2 Creating new IP core	
	5.3.1.3 Setting core parameters	
5.	3.2 Adding PCIe core to project	
5.	3.3 Programming files	
5 <i>1</i>	Unloading EDGA Gatoward to ELASH Momony	105
J.4 -		
5.4	4.1 Uploading FPGA Gateware to FLASH Memory using LimeSuiteGUI	
5.4	4.2 Uploading FPGA gateware to FLASH memory using JTAG Cable	

1. Introduction

LimeSDR-QPCIe is low-cost software defined radio board based on Lime LMS7002M Field Programmable Radio Frequency (FPRF) transceiver and Altera Cyclone V PFGA, through which apps can be programmed to support any type of wireless standard, e.g. UMTS, LTE, LoRa, GPS, WiFi, Zigbee, RFID, Digital Broadcastimng, Radar and many more.

2. LimeSDR-QPCIe Board Key Features

The LimeSDR-QPCIe development board provides a hardware platform for developing and prototyping high-performance and logic-intensive digital and RF designs using Altera's Cyclone V FPGA and Lime Microsystems transceiver.

Figure 1 LimeSDR-QPCIe v1.2 board

For more information on the following topics, refer to the respective documents:

- Cyclone V device family, refer to Cyclone V Device support resources [link]
- LMS7002M transceiver resources [link]

LimeSDR-QPCIe v1.2 board features:

- USB Interface
 - Cypress FX3 Super Speed USB 3rd generation controller
- FPGA Features
 - Cyclone V, 5CGXFC7D7F31C8N device in 896-pin FBGA package
 - 150'000 logic elements
 - 6860 Kbits embedded memory
 - 312 embedded 18x18 multipliers
 - o 7 PLLs
 - 9 Transceivers (2.5Gbps)
 - PCIe Hard IP Blocks
 - 2 Hard Memory Controllers

• FPGA Configuration

- JTAG mode configuration
- Active serial mode configuration
- Possibility to update FPGA gateware by using FX3 (USB)
- Possibility to update FPGA gateware by using PCIe interface.
- RF
 - o 2x LMS7002M, FPRF transceivers
 - Onboard RSSI measurement circuits
 - Onboard loopback control switches
- DACs and ADCs
 - 2x DAC5672A, dual, 14-bit, Digital-To-Analog converters
 - o 1x ADS424, Dual-Channel, 14-bit, Analog-To-Digital converter
- Memory Devices
 - 4 x 2Gbit DDR3 SDRAM (128M x 16)
 - 4Mbit flash for FX3 firmware
 - 128Mbit flash for FPGA gateware
 - o 2 x 128Kbit and 2 x 512Kbit EEPROMs for LMS MCU firmware, LMS MCU data
 - o 1 x 128K EEPROM for FX3 or FPGA data
- Connections
 - o microUSB3.0 (type B) connector
 - PCIe x4 edge connector (Gen1)
 - Coaxial RF (U.FL) connectors
 - 2x PMOD header (0.1" pitch)
 - FPGA (0.1" pitch) and FX3 (0.05" pitch) JTAG connectors
 - 12V DC power jack and pinheader
 - LVDS connector (0.05" pitch)
 - Fan connector (12V/5V)
 - PCIe 6-pin power connector
 - Holder for coin cell CR1220 battery
- Clock System
 - 30.72MHz VCTCXO (precision: ±1 ppm initial, ±4 ppm stable).
 - Possibility to lock VCTCXO to external clock using ADF4002 or tune VCTCXO by onboard DAC (AD5662)
 - Programmable clock generator for the FPGA reference clock input or LMS PLLs

- VCTCXO clock output for external device synchronization.
- 1x 100 MHz, 4 x 125MHz crystal oscillators for FPGA

• Miscellaneous devices

- LM75 Digital temperature sensor with 2-Wire Interface.
- DS3231 real-time clock.
- M0578-A3 GPS/GNSS module receiver
- **Board Size** 190mm x 106.7mm (7.48" x 4.20")

2.1 LimeSDR-QPCIe Board Overview

LimeSDR-QPCIe board version 1.2 picture with highlighted major connectors presented in *Figure* 2. There are three connector types – data and debugging (PCIe, USB3.0, PMOD, LVDS and JTAG), power (DC jack and external supply pinheaders) and high frequency (RF and reference clock).

Board components description listed in the Table 1.

Table 1. Board con	mponents	I. Board components
--------------------	----------	---------------------

Featured Devices					
Board Reference	Board Reference Type Description				
IC1, IC2	FPRF	Field programmable RF transceivers			
		LMS7002M			
IC8	FPGA	Altera Cyclone V GX,			
		5CGXFC7D7F31C8N, 896-BGA			
IC13	USB3.0	Cypress FX3 Supper Speed USB 3 rd			
	microcontroller	generation controller CYUSB3013			
I	Miscellaneous devi	ices on board			
IC7, IC8	IC	8-bit shift registers 74HC595BQ,115			
IC9, IC49	IC	Bidirectional voltage shifters			
SN74AVC4T774RSVR					

	IC	100MIL 2 CIL SDDT DE gwitches		
IC10, IC11, IC12, IC13, IC14, IC15, IC16, IC17		SKY13323-378LF		
IC18 IC20 IC23 IC25 IC26	IC	12-bit ADCs MAX11108AVB+T		
IC28				
IC19, IC24, IC27	IC	1MHz–10GHz dual log detector/controller		
		ADL5519		
IC22	IC	SP4T RF switch PE42442A-Z		
IC31	IC	4 parallel 2:1 switches TS3A5018PWR		
IC37	IC	14-bit 2-channel ADC ADS4246IRGCT		
IC38	IC	Dual differential amplifier ADA4930		
IC39, IC56	IC	Differential line drivers SN65LVDS1DBVR		
IC40, IC41	IC	Dual differential DACs DAC5672AIPFB		
IC44, IC45	IC	Bidirectional 8-channel voltage translators		
		FXLA108BQX		
IC47	IC	Temperature sensor LM75		
IC48	IC	GPS receiver module M10578-A3		
IC50	IC	Real time clock (RTC) DS3231S#		
BATT1	Holder	Holder for coin cell CR1220 battery		
ESD26	TVS	USB3.0 ESD protection TVS diode		
ESD1, ESD2, ESD3, ESD4,	TVS	RF connector ESD protection TVS diodes		
ESD5, ESD6, ESD7, ESD8,				
ESD9, ESD10, ESD11,				
ESD12, ESD13, ESD14,				
ESD15, ESD16, ESD17,				
ESD18, ESD19, ESD20,				
ESD21, ESD22, ESD23,				
ESD24, ESD25				
Configu	ration, Status and	l Setup Components		
R56, R57, R58, R59	0 Ohm resistor	Board BOM version BOM_VER[3:0].		
		Default BOM_VER=0 (all resistors		
		populated).		
R160, R161, R163, R164,	0 Ohm resistor	FPGA (IC8) MSEL[3:0]. Default mode:		
R166, R167, R168, R169,		Active Serial Standard configuration.		
R171, R172				
[R268, R271, R275, R279],	0 Ohm resistor	DAC#1 differential channels TX1_BB_I/Q		
[R269, R273, R277, R281]		connection selection to either LMS7002M		
		#1 or LMS7002M #2. Default populated		
		group is [R268, R271, R275, R279].		
		Resistor groups are defined in [] brackets.		
[R270, R274, R278, R282],	0 Ohm resistor	DAC#2 differential channels TX2_BB_I/Q		
[R272, R276, R280, R283]		connection selection to either LMS7002M		
		#1 or LMS7002M #2. Default populated		
		group is [R270, R274, R278, R282].		
		Resistor groups are defined in [] brackets.		

R364, R379, R384 and their	0 Ohm resistor	Clock buffer (IC52) CLKin0 (pin 13) clock
respective power connecting		source selection. R364 and R365 are
resistors R365, R380, R382		populated by default.
R368, R372, R374	0 Ohm resistor	Clock buffer (IC52) CLKin1 (pin 28) clock
		source selection. R374 is populated by
		default.
R375	0 Ohm resistor	Clock buffer (IC52) source (CLKin0 or
		CLKin1) selection. If unpopulated, clock
		source is CLKin0 (default). If populated,
		clock source is CLKin1.
R302, R305, R307	10 kOhm	USB3.0 microcontroller (IC13) boot
	resistor	configuration (PMODE0[2:0]) resistors.
		Default mode: SPI boot, On Failure - USB
		Boot
R294, R296, R298	10 kOhm	USB3.0 microcontroller (IC13)
	resistor	crystal/clock frequency selection
		(FSLC[2:0]) resistors. Default mode:
100 0212	D ' 1 1 0	19.2MHz crystal
J28, R313	Pin header, 0	USB3.0 microcontroller (IC13) boot source $(E1, 1)$
	Ohm resistor	(Flash memory or USB), 0.1" pitch jumper
		or 0402 UR resistor. In normal operation
120	ITAC shain nin	USP2.0. microcontroller (IC12) debugging
J29	beader	pin header 0.05" nitch
SW1	Push-button	USB3.0 microcontroller reset button
126	ITAG chain pin	FPGA programming pin header for Altera
520	header	USB-Blaster download cable, 0.1" pitch
LED1	Green status	FPGA configuration done LED
	LED	
LED2-LED5	Green status	User defined general purpose green LEDs
	LEDs	
LED6	Red-green status	User defined general purpose dual colour
	LED	LED
	General User Inj	put/Output
J31, J32	Connector 0.1"	PMOD connectors
SW2	Switch	4-bit FPGA switch
J33	Pin header	Board cooling fan pin header, 0.1"
	Memory De	evices
IC3, IC5, IC51	EEPROM	128Kbit (16K x 8) EEPROM, LMS7002
		MCU firmware and general purpose
		memory
1C4, 1C6	EEPROM	512Kbit (64K x 8) EEPROM, connected to
1000		main I2C bus
IC30	Flash memory	128Mbit (16M x 8) Flash for FPGA
		configuration (unpopulated)

IC32	Flash memory	128Mbit (16M x 8) Flash for FPGA		
		configuration		
IC33, IC34, IC35, IC36	DDR3 memory	2Gbit (128M x 16) DDR3 SDRAM		
	Communicati	on Ports		
J27	USB3.0	microUSB3.0 (type B) connector		
	connector			
P1	PCIe connector	PCI Express (Gen1) x4 connector		
	Clock Circ	uitry		
XO1	VCOCXO	10MHz voltage- and oven-controlled		
		crystal oscillator		
XO2, XO3	VCTCXO	30.72MHz voltage-controlled crystal		
		oscillator		
XO4	VCTCXO	40MHz voltage-controlled crystal		
		oscillator		
IC57	IC	Programmable clock generator for the		
		FPGA reference clock input and RF boards		
IC53	IC	ADF4002 phase detector		
IC54	IC	16-bit DAC for VCTCXO/VCOCXO		
		frequency tuning		
IC52	IC	Clock buffer		
IC55	IC	Clock buffer		
J36	U.FL connector	Reference clock input		
J35	U.FL connector	Reference clock output		
XO5	Crystal	100MHz single-ended FPGA clock		
	oscillator			
XO6	Crystal	125MHz single-ended FPGA clock		
	oscillator			
XO7	Crystal	125MHz differential FPGA-DDR clock		
	oscillator			
XO8	Crystal	125MHz differential FPGA-DDR clock		
	oscillator			
XO9	Crystal	125MHz differential FPGA clock for PCIe		
	oscillator	REFCLK1		
IC56	IC	Single-ended to differential clock		
		converter. Clock source is IC57 pin 9.		
		Connected to FPGA PCIe REFCLK2 and		
		LVDS connector J30.		
	Power Su	pply		
J37	DC input jack	External 12V DC power supply		
J38	Header	6-pin PCIe power connector, 0.165" pitch		
J39	Pin header	External 12V DC power supply and main		
		internal power rail		

LimeSDR-QPCIe board version 1.2 picture with highlighted top components are presented in *Figure 3*.

Figure 3 LimeSDR-QPCIe v1.2 Top Components

LimeSDR-QPCIe board version 1.2 picture with highlighted bottom components is presented in *Figure 4*.

Figure 4 LimeSDR-QPCIe v1.2 Bottom Components

2.2 LimeSDR-QPCIe Board Architecture

The heart of the LimeSDR-QPCIe board is Altera Cyclone V GX FPGA. Its main function is to transfer digital data between the PC through an edge PCIE and a USB3.0 connector. The block diagram for LimeSDR-QPCIe board is presented in the *Figure 5*.

2.2.1 FPGA configuration

FPGA is set to use x1 Active Serial (AS) configuration scheme. In this scheme if valid configuration file exists in FLASH memory (IC30 or IC32) it is automatically loaded after power is applied to the board. In Table 2 it is listed resistor setup for AS configuration mode select.

Schematic signal	Logic level	0R Resistor setup		Comment
name	10,01			
MSEL0	Н	R160 (NF)	R161 (Fit)	
MSEL1	Н	R163 (NF)	R164 (Fit)	
MSEL2	L	R166 (Fit)	R167 (NF)	
MSEL3	L	R168 (Fit)	R169 (NF)	
MSEL4	Н	R171 (NF)	R172 (Fit)	

Table 2 FPGA configuration setup

There are two options which allows to change configuration file in FLASH memory:

- USB 3.0 controller CYUSB3013 (IC42) has access to configuration memory. With valid firmware and software, gateware for FPGA can be uploaded into FLASH memory (IC30 or IC32) by using USB3.0 cable. IC42 can initiate FPGA reconfiguration. For signal interconnect details see chapter 2.2.2.3 USB 3.0 Controller.
- JTAG Header 10pin connector (J26) provides access to FPGA JTAG chain. By using external download cable such as USB-Blaster and Quartus II Programmer software FLASH memory (IC30 or IC32) can be reprogrammed. JTAG connections are listed in Table 3.

Connector	Schematic signal	FPGA	Comment
pin	name	pin	
		(IC29)	
1	FPGA_JTAG_TCK	AC7	R170 Pull-Down resistor
2	VCC2P5	-	
3	FPGA_JTAG_TDO	W9	
4	VCC2P5	-	
5	FPGA_JTAG_TMS	V7	R162 Pull-Up resistor
6	-	-	
7	NC	-	
8	-	-	
9	FPGA_JTAG_TDI	U7	R165 Pull-Up resistor
10	GND	-	

 Table 3 JTAG header (J26)

2.2.2 Main components

This chapter describes main components mounted on LimeSDR-QPCIe v1.2 board.

2.2.2.1 LMS7002M RF transceiver

There are two LMS7002M field programmable RF transceiver ICs (LMS7002M#1 - IC1 and LMS7002M#1 - IC2), interface signals can be acknowledged by corresponding names LMSx_*, where x can be 1 or 2. For example LMS1_* signals belongs to IC1 and LMS2_* belongs to IC2.

In the following manner interface and control signals are described below:

- **Digital Interface Signals:** LMS7002 is using data bus LMSx_DIQ1_D[11:0] and LMSx_DIQ2_D[11:0], LMSx_ENABLE_IQSEL1 and LMSx_ENABLE_IQSEL2, LMSx_FCLK1 and LMSx_FCLK2, LMSx_MCLK1 and LMSx_MCLK2 signals to transfer data to/from FPGA. Indexes 1 and 2 indicate transceiver digital data PORT-1 or PORT-2. Any of these ports can be used to transmit or receive data. By default, PORT-1 is selected as receive port and PORT-2 is selected as transmit port. The FCLK# is input clock and MCLK# is output clock for LMS7002M transceiver. TXNRX signals sets ports directions. For LMS7002M interface timing details refer to LMS7002M transceiver datasheet page 12-13. [link].
- LMS Control Signals: these signals are used for optional functionality:
 - LMSx_RXEN, LMSx_TXEN receiver and transmitter enable/disable signals.
 - LMS_RESET LMS7002M reset signal.
- **SPI Interface:** LMS7002M transceiver is configured via 4-wire SPI interface; FPGA_SPI0_SCLK, FPGA_SPI0_MOSI, FPGA_SPI0_MISO_LMSx, FPGA_SPI0_LMSx_SS. The SPI interface controlled from FPGA.
- LMS I2C Interface: LMS EEPROM are connected to this interface. The signals LMSx_I2C_SCL, LMSx_I2C_DATA is not connected to FPGA

The Table 4 and Table 5below lists RF transceiver respectively LMS7002#1 and LMS7002#2 pins, schematic signal names, FPGA interconnections and I/O standard.

Chip	Chip reference	Schematic signal name	FPGA	FPGA	Comments
pin	(IC1)		pin	I/O	
(IC1)				standard	
AM2	xoscin_rx	LMS1_RxPLL_CLK	NC	3.3V	Connected
4					to 30.72
					MHz clock
P34	MCLK2	LMS1_MCLK2	U21	2.5V/3.3V	
R29	FCLK2	LMS1_FCLK2	Y22	2.5V/3.3V	
U31	TXNRX2	LMS1_TXNRX2	U26	2.5V/3.3V	
V34	RXEN	LMS1_RXEN	Y26	2.5V/3.3V	

 Table 4 RF transceiver (LMS7002M#1) digital interface pins

Chip	Chip reference	Schematic signal name	FPGA	FPGA	Comments
pin	(IC1)	_	pin	I/O	
(IC1)				standard	
R33	ENABLE_IQSEL	LMS1_ENABLE_IQSEL2	AA26	2.5V/3.3V	
	2				
H30	DIQ2_D0	LMS1_DIQ2_D0	AC27	2.5V/3.3V	
J31	DIQ2_D1	LMS1_DIQ2_D1	AB27	2.5V/3.3V	
K30	DIQ2_D2	LMS1_DIQ2_D2	Y21	2.5V/3.3V	
K32	DIQ2_D3	LMS1_DIQ2_D3	AA29	2.5V/3.3V	
L31	DIQ2_D4	LMS1_DIQ2_D4	Y28	2.5V/3.3V	
K34	DIQ2_D5	LMS1_DIQ2_D5	AC26	2.5V/3.3V	
M30	DIQ2_D6	LMS1_DIQ2_D6	W27	2.5V/3.3V	
M32	DIQ2_D7	LMS1_DIQ2_D7	AA25	2.5V/3.3V	
N31	DIQ2_D8	LMS1_DIQ2_D8	V26	2.5V/3.3V	
N33	DIQ2_D9	LMS1_DIQ2_D9	AH29	2.5V/3.3V	
P30	DIQ2_D10	LMS1_DIQ2_D10	V27	2.5V/3.3V	
P32	DIQ2_D11	LMS1_DIQ2_D11	W28	2.5V/3.3V	
E5	xoscin_tx	LMS1_TxPLL_CLK	NC	3.3V	Connected
					to 30.72
					MHz clock
AB34	MCLK1	LMS1_MCLK1	U22	2.5V/3.3V	
AA33	FCLK1	LMS1_FCLK1	Y30	2.5V/3.3V	
V32	TXNRX1	LMS1_TXNRX1	U27	2.5V/3.3V	
U29	TXEN	LMS1_TXEN	V21	2.5V/3.3V	
Y32	ENABLE_IQSEL	LMS1_ENABLE_IQSEL1	U28	2.5V/3.3V	
	1				
AG31	DIQ1_D0	LMS1_DIQ1_D0	T28	2.5V/3.3V	
AF30	DIQ1_D1	LMS1_DIQ1_D1	Y23	2.5V/3.3V	
AF34	DIQ1_D2	LMS1_DIQ1_D2	AB28	2.5V/3.3V	
AE31	DIQ1_D3	LMS1_DIQ1_D3	T29	2.5V/3.3V	
AD30	DIQ1_D4	LMS1_DIQ1_D4	AA23	2.5V/3.3V	
AC29	DIQ1_D5	LMS1_DIQ1_D5	V22	2.5V/3.3V	
AE33	DIQ1_D6	LMS1_DIQ1_D6	V24	2.5V/3.3V	
AD32	DIQ1_D7	LMS1_DIQ1_D7	Y27	2.5V/3.3V	
AC31	DIQ1_D8	LMS1_DIQ1_D8	AC24	2.5V/3.3V	
AC33	DIQ1_D9	LMS1_DIQ1_D9	V25	2.5V/3.3V	
AB30	DIQ1_D10	LMS1_DIQ1_D10	W22	2.5V/3.3V	
AB32	DIQ1_D11	LMS1_DIQ1_D11	AA24	2.5V/3.3V	
U33	CORE_LDO_EN	LMS1_CORE_LDO_EN	Y25	2.5V/3.3V	
E27	RESET	LMS1_RESET	L21	2.5V/3.3V	
D28	SEN	FPGA_SPI0_LMS1_SS	V29	2.5V/3.3V	SPI
					interface

Chip	Chip reference	Schematic signal name	FPGA	FPGA	Comments
pin	(IC1)		pin	1/0	
(IC1)				standard	
C29	SCLK	FPGA_SPI0_SCLK	T25	2.5V/3.3V	SPI
					interface
F30	SDIO	FPGA_SPI0_MOSI	R26	2.5V/3.3V	SPI
					interface
F28	SDO	FPGA_SPI0_MISO_LMS	R30	2.5V/3.3V	SPI
		1			interface
D26	SDA	LMS1_I2C_SDA	-	2.5V	Connected
					to
					EEPROM
C27	SCL	LMS1_I2C_SCL	-	2.5V	Connected
					to
					EEPROM

Table 5 F	RF transceiver	(LMS7002M#2)	digital	interface	pins
Lable 51	a uniscerver	(LIVID/00210112)	urgnur	muchace	pms

Chip	Chip reference	Schematic signal name	FPGA	FPGA	Comments
pin	(IC2)		pin	I/O	
(IC2)				standard	
AM24	xoscin_rx	LMS2_RxPLL_CLK	NC	3.3V	Connected
					to 30.72
					MHz clock
P34	MCLK2	LMS2_MCLK2	U23	2.5V/3.3V	
R29	FCLK2	LMS2_FCLK2	AC29	2.5V/3.3V	
U31	TXNRX2	LMS2_TXNRX2	AC30	2.5V/3.3V	
V34	RXEN	LMS2_RXEN	AE25	2.5V/3.3V	
R33	ENABLE_IQSEL2	LMS2_ENABLE_IQSEL2	AF25	2.5V/3.3V	
H30	DIQ2_D0	LMS2_DIQ2_D0	AA28	2.5V/3.3V	
J31	DIQ2_D1	LMS2_DIQ2_D1	AJ30	2.5V/3.3V	
K30	DIQ2_D2	LMS2_DIQ2_D2	AB29	2.5V/3.3V	
K32	DIQ2_D3	LMS2_DIQ2_D3	AD24	2.5V/3.3V	
L31	DIQ2_D4	LMS2_DIQ2_D4	AG28	2.5V/3.3V	
K34	DIQ2_D5	LMS2_DIQ2_D5	AG27	2.5V/3.3V	
M30	DIQ2_D6	LMS2_DIQ2_D6	AB26	2.5V/3.3V	
M32	DIQ2_D7	LMS2_DIQ2_D7	AF24	2.5V/3.3V	
N31	DIQ2_D8	LMS2_DIQ2_D8	AH30	2.5V/3.3V	
N33	DIQ2_D9	LMS2_DIQ2_D9	AE23	2.5V/3.3V	
P30	DIQ2_D10	LMS2_DIQ2_D10	AG29	2.5V/3.3V	
P32	DIQ2_D11	LMS2_DIQ2_D11	AE26	2.5V/3.3V	
E5	xoscin_tx	LMS2_TxPLL_CLK	NC	3.3V	Connected
					to 30.72
					MHz clock
AB34	MCLK1	LMS2_MCLK1	T24	2.5V/3.3V	

Chip	Chip reference Schematic signal name		FPGA	FPGA	Comments
pin	(IC2)		pin	I/O	
(IC2)				standard	
AA33	FCLK1	LMS2_FCLK1	W30	2.5V/3.3V	
V32	TXNRX1	LMS2_TXNRX1	AF28	2.5V/3.3V	
U29	TXEN	LMS2_TXEN	AD27	2.5V/3.3V	
Y32	ENABLE_IQSEL1	LMS2_ENABLE_IQSEL1	AF29	2.5V/3.3V	
AG31	DIQ1_D0	LMS2_DIQ1_D0	AD25	2.5V/3.3V	
AF30	DIQ1_D1	LMS2_DIQ1_D1	AD29	2.5V/3.3V	
AF34	DIQ1_D2	LMS2_DIQ1_D2	AH27	2.5V/3.3V	
AE31	DIQ1_D3	LMS2_DIQ1_D3	AE30	2.5V/3.3V	
AD30	DIQ1_D4	LMS2_DIQ1_D4	AE28	2.5V/3.3V	
AC29	DIQ1_D5	LMS2_DIQ1_D5	AD30	2.5V/3.3V	
AE33	DIQ1_D6	LMS2_DIQ1_D6	AJ28	2.5V/3.3V	
AD32	DIQ1_D7	LMS2_DIQ1_D7	AF26	2.5V/3.3V	
AC31	DIQ1_D8	LMS2_DIQ1_D8	AE27	2.5V/3.3V	
AC33	DIQ1_D9	LMS2_DIQ1_D9	AJ29	2.5V/3.3V	
AB30	DIQ1_D10	LMS2_DIQ1_D10	AD28	2.5V/3.3V	
AB32	DIQ1_D11	LMS2_DIQ1_D11	AF30	2.5V/3.3V	
U33	CORE_LDO_EN	LMS2_CORE_LDO_EN	AD23	2.5V/3.3V	
E27	RESET	LMS2_RESET	AA30	2.5V/3.3V	
D28	SEN	FPGA_SPI0_LMS2_SS	U29	2.5V/3.3V	SPI
					interface
C29	SCLK	FPGA_SPI0_SCLK	T25	2.5V/3.3V	SPI
					interface
F30	SDIO	FPGA_SPI0_MOSI	R26	2.5V/3.3V	SPI
F2 0	(DO		1/20	0.511/0.011	interface
F28	SDO	FPGA_SPI0_MISO_LMS	V30	$2.5 \sqrt{3.3} \sqrt{3}$	SPI
D26	SDA	L MS2 I2C SDA		2.51	Connected
D20	SDA	LMS2_I2C_SDA	-	2.3 V	to
					EEPROM
C27	SCL	LMS2 I2C SCL	-	2.5V	Connected
					to
					EEPROM

2.2.2.2 SDRAM

LimeSDR-QPCIe board has four 2Gb DDR3 SDRAM memory ICs (AS4C128M16D3B-12BCN [link]) which are connected to Cyclone V GX FPGA. The memory can be used for data manipulation at high data rates between transceiver and FPGA. There are two independent DDR3 SDRAM interfaces:

- **DDR3 TOP** this is 32bit data interface which consist of two x16 memory devices (IC33 AND IC34) with a single address and command bus. Interface is connected to FPGA Bank 7A and 8A and uses hard memory controller. **Error! Reference source not found.** lists DDR3 TOP interface pins.
- **DDR3 BOT** this is 32bit data interface which consist of two x16 memory devices (IC35 AND IC36) with a single address and command bus. Interface is connected to FPGA Bank 3B and 4A and uses hard memory controller. lists DDR3 BOT interface pins.

Following Table 6 lists signal and pin information for DDR3 TOP interface and Table 7 for the DDR3 BOT interface.

RAM	RAM	Schematic signal	FPGA	FPGA I/O	Comments					
reference	pin	name	pin	standard						
			(IC29)							
	Address bus (IC33 and IC34 shared signals)									
A0	N3	DDR3_TOP_A0	B11	SSTL-15 Class I	Active					
					termination					
A1	P7	DDR3_TOP_A1	A11	SSTL-15 Class I	Active					
					termination					
A2	P3	DDR3_TOP_A2	F9	SSTL-15 Class I	Active					
					termination					
A3	N2	DDR3_TOP_A3	E10	SSTL-15 Class I	Active					
					termination					
A4	P8	DDR3_TOP_A4	F16	SSTL-15 Class I	Active					
					termination					
A5	P2	DDR3_TOP_A5	E16	SSTL-15 Class I	Active					
					termination					
A6	R8	DDR3_TOP_A6	D9	SSTL-15 Class I	Active					
					termination					
A7	R2	DDR3_TOP_A7	C10	SSTL-15 Class I	Active					
					termination					
A8	T8	DDR3_TOP_A8	E12	SSTL-15 Class I	Active					
					termination					
A9	R3	DDR3_TOP_A9	D13	SSTL-15 Class I	Active					
					termination					
A10/AP	L7	DDR3_TOP_A10	B7	SSTL-15 Class I	Active					
					termination					
A11	R7	DDR3_TOP_A11	A8	SSTL-15 Class I	Active					
					termination					

 Table 6 DDR3 TOP interface pins

A12/BC#	N7	DDR3_TOP_A12	B6	SSTL-15 Class I	Active
					termination
A13	T3	DDR3_TOP_A13	A6	SSTL-15 Class I	Active
					termination
	1	Bank address bus (IC33	3 and IC34	shared signals)	
BA0	M2	DDR3_TOP_BA0	A10	SSTL-15 Class I	Active
D 4 1	NO		E15	CCTL 15 Class I	termination
BAI	INð	DDR3_TOP_BAI	F15	SSTL-15 Class I	Active
BA2	M3	DDR3 TOP BA2	F15	SSTL-15 Class I	Active
DIAL	1415		L13	551L 15 Class 1	termination
		Data bus [0:15] (IC3	33)	
DQ0	E3	DDR3 TOP DQ0	C15	SSTL-15 Class I	
DQ1	F7	DDR3 TOP DQ1	C16	SSTL-15 Class I	
DQ2	F2	DDR3_TOP_DQ2	C11	SSTL-15 Class I	
DQ3	F8	DDR3_TOP_DQ3	A13	SSTL-15 Class I	
DQ4	H3	DDR3_TOP_DQ4	D17	SSTL-15 Class I	
DQ5	H8	DDR3_TOP_DQ5	E17	SSTL-15 Class I	
DQ6	G2	DDR3_TOP_DQ6	D12	SSTL-15 Class I	
DQ7	H7	DDR3_TOP_DQ7	A14	SSTL-15 Class I	
DQ8	D7	DDR3_TOP_DQ8	B17	SSTL-15 Class I	
DQ9	C3	DDR3_TOP_DQ9	C17	SSTL-15 Class I	
DQ10	C8	DDR3_TOP_DQ10	A16	SSTL-15 Class I	
DQ11	C2	DDR3_TOP_DQ11	C14	SSTL-15 Class I	
DQ12	A7	DDR3_TOP_DQ12	F18	SSTL-15 Class I	
DQ13	A2	DDR3_TOP_DQ13	G18	SSTL-15 Class I	
DQ14	B8	DDR3_TOP_DQ14	B18	SSTL-15 Class I	
DQ15	A3	DDR3_TOP_DQ15	A19	SSTL-15 Class I	
		Data bus [1	l6:31] (IC	34)	
DQ0	E3	DDR3_TOP_DQ16	D18	SSTL-15 Class I	
DQ1	F7	DDR3_TOP_DQ17	D19	SSTL-15 Class I	
DQ2	F2	DDR3_TOP_DQ18	A21	SSTL-15 Class I	
DQ3	F8	DDR3_TOP_DQ19	B21	SSTL-15 Class I	
DQ4	H3	DDR3_TOP_DQ20	E18	SSTL-15 Class I	
DQ5	H8	DDR3_TOP_DQ21	F19	SSTL-15 Class I	
DQ6	G2	DDR3_TOP_DQ22	B23	SSTL-15 Class I	
DQ7	H7	DDR3_TOP_DQ23	B24	SSTL-15 Class I	
DQ8	D7	DDR3_TOP_DQ24	C19	SSTL-15 Class I	
DQ9	C3	DDR3_TOP_DQ25	D20	SSTL-15 Class I	
DQ10	C8	DDR3_TOP_DQ26	A25	SSTL-15 Class I	
DQ11	C2	DDR3_TOP_DQ27	D22	SSTL-15 Class I	
DQ12	A7	DDR3_TOP_DQ28	C20	SSTL-15 Class I	

DQ13	A2	DDR3_TOP_	DQ29	C21	SSTL-15 Class I					
DQ14	B8	DDR3_TOP_	DQ30	D23	SSTL-15 Class I					
DQ15	A3	DDR3_TOP_	DQ31	C25	SSTL-15 Class I					
	Data mask[0:1] (IC33)									
LDM	E7	DDR3_TOP_	DM0	B14	SSTL-15 Class I					
UDM	D3	DDR3_TOP_	DM1	B19	SSTL-15 Class I					
		•	Data mask	[2:3] (IC3	34)					
LDM	E7	DDR3_TOP_	DM2	C24	SSTL-15 Class I					
UDM	D3	DDR3_TOP_	DM3	D25	SSTL-15 Class I					
		j	Data strobe	e[0:1] (IC.	33)					
LDQS	G3	DDR3_TOP_	DQS0_P	K17	Differential 1.5-V					
					SSTL Class I					
LDQS#	F3	DDR3_TOP_	DQS0_N	J17	Differential 1.5-V					
					SSTL Class I					
UDQS	C7	DDR3_TOP_	DQS1_P	K16	Differential 1.5-V					
			DOG()		SSTL Class I					
UDQS#	B7	DDR3_TOP_	DQSI_N	L16	Differential 1.5-V					
		<u> </u>			SSTL Class I					
LDOG			Data strobe	e[2:3] (IC.	34)	1				
LDQS	G3	DDR3_TOP_	DQS2_P	L18	Differential 1.5-V					
I DOG#	F 2		DOGO N	V 10	SSTL Class I					
LDQS#	F3	DDR3_TOP_	DQS2_N	K18	Differential 1.5-V					
	<u>C7</u>	DDP2 TOP	DO\$2 D	K20	Differential 15 V					
UDQS	C/	DDK5_10F_	DQ35_F	K 20	SSTI Class I					
UDOS#	B7	DDR3 TOP	DOS3 N	I19	Differential 15-V					
ODQ5#	D/		<u>DQ55_</u> I1	J1)	SSTL Class I					
		Memory clo	ock (IC33 a	and IC34 s	shared signals)					
CK#	K7	DDR3 TOP	CK N	M8	Differential 1.5-V					
011		2210_101_		1.10	SSTL Class I					
СК	J7	DDR3_TOP_	CK_P	M9	Differential 1.5-V					
					SSTL Class I					
		Control sign	nals(IC33 a	and IC34 s	shared signals)					
СКЕ	K9	DDR3_TOP_	CKE	A18	SSTL-15 Class I					
WE#	L3	DDR3_TOP_	WEn	C7	SSTL-15 Class I	Active				
						termination				
CAS#	K3	DDR3_TOP_	CASn	C9	SSTL-15 Class I	Active				
						termination				
RAS#	J3	DDR3_TOP_	RASn	B8	SSTL-15 Class I	Active				
						termination				
CS#	L2	DDR3_TOP_	CSn	J15	SSTL-15 Class I	Active				
0.0.7	17.1		0.00	D12		termination				
ODT	KI	DDR3_TOP_	ODT	B13	SSTL-15 Class I	Active				
						termination				

RESET#	T2	DDR3_TOP_RESETn	B22	1.5V	Active					
					termination					
	VREF (IC33 and IC34 shared signals)									
VREFDQ	H1	VREF_DDR3_TOP	-							
VREFCA	M8	VREF_DDR3_TOP	-							
		Memory ZQ impeda	nce calibr	ation (IC33)						
ZQ	L8	DDR3_TOP_RZQ0	-							
		Memory ZQ impeda	nce calibr	ation (IC34)						
ZQ	L8	DDR3_TOP_RZQ1	-							
FPGA OCT calibration pin										
-	-	OCT_RZQIN1	B12	SSTL-15						

Table 7 DDR3 BOT interface pins

RAM	RAM	Schematic signal	FPGA	FPGA I/O	Comments					
reference	pin	name	pin	standard						
			(IC29)							
	Address bus (IC35 and IC36 shared signals)									
A0	N3	DDR3_BOT_A0	AJ12	SSTL-15 Class I	Active					
					termination					
A1	P7	DDR3_BOT_A1	AK12	SSTL-15 Class I	Active					
					termination					
A2	P3	DDR3_BOT_A2	AH11	SSTL-15 Class I	Active					
					termination					
A3	N2	DDR3_BOT_A3	AH12	SSTL-15 Class I	Active					
					termination					
A4	P8	DDR3_BOT_A4	AG13	SSTL-15 Class I	Active					
					termination					
A5	P2	DDR3_BOT_A5	AG14	SSTL-15 Class I	Active					
					termination					
A6	R8	DDR3_BOT_A6	AK10	SSTL-15 Class I	Active					
					termination					
A7	R2	DDR3_BOT_A7	AK11	SSTL-15 Class I	Active					
					termination					
A8	T8	DDR3_BOT_A8	AF11	SSTL-15 Class I	Active					
					termination					
A9	R3	DDR3_BOT_A9	AG11	SSTL-15 Class I	Active					
					termination					
A10/AP	L7	DDR3_BOT_A10	AJ8	SSTL-15 Class I	Active					
					termination					
A11	R7	DDR3_BOT_A11	AK8	SSTL-15 Class I	Active					
					termination					
A12/BC#	N7	DDR3_BOT_A12	AJ7	SSTL-15 Class I	Active					
					termination					
A13	T3	DDR3_BOT_A13	AK7	SSTL-15 Class I	Active					
					termination					

Bank address bus (IC35 and IC36 shared signals)									
BA0	M2	DDR3_BOT_BA0	AH9	SSTL-15 Class I	Active				
					termination				
BA1	N8	DDR3_BOT_BA1	AH10	SSTL-15 Class I	Active				
					termination				
BA2	M3	DDR3_BOT_BA2	AJ10	SSTL-15 Class I	Active				
					termination				
Data bus [0:15] (IC35)									
DQ0	E3	DDR3_BOT_DQ0	AF15	SSTL-15 Class I					
DQ1	F7	DDR3_BOT_DQ1	AE16	SSTL-15 Class I					
DQ2	F2	DDR3_BOT_DQ2	AJ14	SSTL-15 Class I					
DQ3	F8	DDR3_BOT_DQ3	AH15	SSTL-15 Class I					
DQ4	H3	DDR3_BOT_DQ4	AE17	SSTL-15 Class I					
DQ5	H8	DDR3_BOT_DQ5	AD17	SSTL-15 Class I					
DQ6	G2	DDR3_BOT_DQ6	AJ15	SSTL-15 Class I					
DQ7	H7	DDR3_BOT_DQ7	AF14	SSTL-15 Class I					
DQ8	D7	DDR3_BOT_DQ8	AK17	SSTL-15 Class I					
DQ9	C3	DDR3_BOT_DQ9	AK16	SSTL-15 Class I					
DQ10	C8	DDR3_BOT_DQ10	AG17	SSTL-15 Class I					
DQ11	C2	DDR3_BOT_DQ11	AJ18	SSTL-15 Class I					
DQ12	A7	DDR3_BOT_DQ12	AG16	SSTL-15 Class I					
DQ13	A2	DDR3_BOT_DQ13	AF16	SSTL-15 Class I					
DQ14	B8	DDR3_BOT_DQ14	AJ19	SSTL-15 Class I					
DQ15	A3	DDR3_BOT_DQ15	AH20	SSTL-15 Class I					
		Data bus [1	.6:31] (IC	36)					
DQ0	E3	DDR3_BOT_DQ16	AE18	SSTL-15 Class I					
DQ1	F7	DDR3_BOT_DQ17	AD18	SSTL-15 Class I					
DQ2	F2	DDR3_BOT_DQ18	AJ20	SSTL-15 Class I					
DQ3	F8	DDR3_BOT_DQ19	AK22	SSTL-15 Class I					
DQ4	H3	DDR3_BOT_DQ20	AF19	SSTL-15 Class I					
DQ5	H8	DDR3_BOT_DQ21	AF18	SSTL-15 Class I					
DQ6	G2	DDR3_BOT_DQ22	AH21	SSTL-15 Class I					
DQ7	H7	DDR3_BOT_DQ23	AK23	SSTL-15 Class I					
DQ8	D7	DDR3_BOT_DQ24	AG19	SSTL-15 Class I					
DQ9	C3	DDR3_BOT_DQ25	AG18	SSTL-15 Class I					
DQ10	C8	DDR3_BOT_DQ26	AH24	SSTL-15 Class I					
DQ11	C2	DDR3_BOT_DQ27	AK25	SSTL-15 Class I					
DQ12	A7	DDR3_BOT_DQ28	AE20	SSTL-15 Class I					
DQ13	A2	DDR3_BOT_DQ29	AD19	SSTL-15 Class I					
DQ14	B8	DDR3_BOT_DQ30	AG24	SSTL-15 Class I					
DQ15	A3	DDR3_BOT_DQ31	AK26	SSTL-15 Class I					
	Data mask[0:1] (IC35)								

LDM	E7	DDR3_BOT_DM0	AE15	SSTL-15 Class I					
UDM	D3	DDR3_BOT_DM1	AH19	SSTL-15 Class I					
Data mask[2:3] (IC36)									
LDM	E7	DDR3_BOT_DM2	AJ23	SSTL-15 Class I					
UDM	D3	DDR3_BOT_DM3	AJ27	SSTL-15 Class I					
		Data strobe	e[0:1] (IC	35)					
LDQS	G3	DDR3_BOT_DQS0_P	Y16	Differential 1.5-V					
_		_		SSTL Class I					
LDQS#	F3	DDR3_BOT_DQS0_	AA16	Differential 1.5-V					
		N		SSTL Class I					
UDQS	C7	DDR3_BOT_DQS1_P	Y17	Differential 1.5-V					
				SSTL Class I					
UDQS#	B7	DDR3_BOT_DQS1_	Y18	Differential 1.5-V					
		N Data atualia	[2,2] (IC)	SSTL Class I					
LDOG	62	Data strobe	$\mathbb{E}[2:3]$ (IC.	$\frac{30}{2}$	[
LDQS	G3	DDR3_BOT_DQS2_P	¥20	Differential 1.5-V					
I DOS#	E2	DDD2 DOT DOS2	A A 20	Differential 15 V					
LDQ3#	ГЭ	N	AA20	STI Class I					
UDOS	C7	DDR3 BOT DOS3 P	AB19	Differential 15-V					
ODQS	07	DDK3_D01_DQ55_1	11017	SSTL Class I					
UDOS#	B7	DDR3 BOT DOS3	AC19	Differential 1.5-V					
		N C -		SSTL Class I					
	•	Memory clock (IC35 a	and IC36 s	shared signals)					
CK#	K7	DDR3_BOT_CK_N	AA14	Differential 1.5-V					
				SSTL Class I					
CK	J7	DDR3_BOT_CK_P	Y13	Differential 1.5-V					
				SSTL Class I					
	T	Control signals(IC35 a	and IC36 s	shared signals)					
sCKE	K9	DDR3_BOT_CKE	AK18	SSTL-15 Class I					
WE#	L3	DDR3_BOT_WEn	AK5	SSTL-15 Class I	Active				
<u></u>			4.50		termination				
CAS#	K3	DDR3_BOT_CASn	AF9	SSTL-15 Class I	Active				
DAGU	12		1.00		termination				
KAS#	12	DDK5_BO1_KASn	AG9	551L-15 Class 1	Active				
CS#	12	DDP3 POT CSn	V12	SSTL 15 Class I	Activo				
CS#		DDR5_DO1_CSII	112	551L-15 Class 1	termination				
ODT	K1	DDR3 BOT ODT	AH14	SSTL-15 Class I	Active				
	171		11117		termination				
RESET#	T2	DDR3 BOT RESETn	AK21	1.5V	Active				
					termination				
	•	VREF (IC35 and I	C36 share	ed signals)					

VREFDQ	H1	VREF_DDR3_BOT	-							
VREFCA	M8	VREF_DDR3_BOT	-							
Memory ZQ impedance calibration (IC35)										
ZQ	L8	DDR3_BOT_RZQ0	-							
	Memory ZQ impedance calibration (IC36)									
ZQ	L8	DDR3_BOT_RZQ1	-							
FPGA OCT calibration pin										
-	-	OCT_RZQIN0	AK13	SSTL-15						

2.2.2.3 USB 3.0 Controller

Software can control LimeSDR-QPCIe board via the USB3 microcontroller (CYUSB3013 (FX3) [<u>link</u>]). The data transfer to/from the board, SPI communication, FPGA configuration is done via the USB3 controller. The controller signals description showed below:

- FX3_DQ[15:0] FX3 16-bit GPIF data interface is connected FPGA.
- FX3_CTL[12:0] FX3 GPIF interface control signals.
- FX3_PCLK GPIF interface clock, connected to FPGA.
- FX3_SPI interface is used to program FX3 firmware flash or FPGA configuration flash memory.
- FX3 I2C bus is connected to the main I2C bus.
- PMODE[2:0] boot options, by default boot from SPI and USB boot is enabled. If J28 jumper is present or R313 is soldered FX3 will boot from IC43 flash memory if correct firmware exists.
- SW1 resets FX3
- J29 FX3 JTAG programming/debugging pin header.

In the Table 8 are listed USB3.0 controller (FX3) pins, schematic signal name, FPGA interconnections and I/O standard.

Chip	Chip	Schematic signal name	FPGA	I/O	Comment
pin	reference		pin	standard	
(IC42)	(IC42)				
F10	GPIO0	FX3_DQ0	U12	1.8V	
F9	GPIO1	FX3_DQ1	U11	1.8V	
F7	GPIO2	FX3_DQ2	U8	1.8V	
G10	GPIO3	FX3_DQ3	U9	1.8V	
G9	GPIO4	FX3_DQ4	T11	1.8V	
F8	GPIO5	FX3_DQ5	R10	1.8V	
H10	GPIO6	FX3_DQ6	T10	1.8V	
H9	GPIO7	FX3_DQ7	T9	1.8V	
J10	GPIO8	FX3_DQ8	V11	1.8V	
J9	GPIO9	FX3_DQ9	V9	1.8V	

Chip	Chip	Schematic signal name	FPGA	I/O	Comment
pin	reference		pin	standard	
(IC42)	(IC42)				
K11	GPIO10	FX3_DQ10	V10	1.8V	
L10	GPIO11	FX3_DQ11	W10	1.8V	
K10	GPIO12	FX3_DQ12	Y10	1.8V	
K9	GPIO13	FX3_DQ13	Y11	1.8V	
J8	GPIO14	FX3_DQ14	AA11	1.8V	
G8	GPIO15	FX3_DQ15	AA8	1.8V	
J6	GPIO16	FX3_PCLK	AB16	1.5V	
K8	GPIO17	FX3_CTL0	AA9	1.8V	
K7	GPIO18	FX3_CTL1	AB8	1.8V	
J7	GPIO19	FX3_CTL2	AC9	1.8V	
H7	GPIO20	FX3_CTL3	AD9	1.8V	
G7	GPIO21	FX3_CTL4	AF8	1.8V	
G6	GPIO22	FX3_CTL5	AF7	1.8V	
K6	GPIO23	FX3_CTL6	AG7	1.8V	
H8	GPIO24	FX3_CTL7	AF6	1.8V	
G5	GPIO25	FX3_CTL8	AG6	1.8V	
H6	GPIO26	FX3_CTL9	AH7	1.8V	
K5	GPIO27	FX3_CTL10	AH6	1.8V	
J5	GPIO28	FX3_CTL11	AH4	1.8V	
H5	GPIO29	FX3_CTL12	AH5	1.8V	
G4	GPIO30	FX3_PMODE0	-	1.8V	
H4	GPIO31	FX3_PMODE1	-	1.8V	
L4	GPIO32	FX3_PMODE2	-	1.8V	
K2	GPIO33	-	-	-	
J4	GPIO34	-	-	-	
K1	GPIO35	-	-	-	
J2	GPIO36	-	-	-	
J3	GPIO37	-	-	-	
J1	GPIO38	-	-	-	
H2	GPIO39	-	-	-	
H3	GPIO40	-	-	-	
F4	GPIO41	FPGA_CONF_DONE	L8	-	Connected to
					Frua
					status
					CONF DONE.
					Additionally,
					connected to
					LED1.

Chip	Chip	Schematic signal name	FPGA	I/O	Comment
pin	reference		pin	standard	
(IC42)	(IC42)				
G2	GPIO42	FPGA_NSTATUS	K7	-	Connected to
					FPGA
<u>C2</u>		EDCA NCONEIC	C5		nSTATUS pin.
63	GPIO45	FPGA_INCONFIG	CS	-	A nign-to-low
					FPGA
					reconfiguration.
F3	GPIO44	FX3_AS_SW	-	-	Logic level L
					connects
					FX3_SPI
					interface to
					FPGA conf.
					Flash (IC30,
F2	GPIO45	FX3 SPL AS SS			FPGA conf
12	011045	17A3_511_A5_55	-	-	Flash slave
					select
F5	GPIO46	FX3_SPI_FPGA_SS	-	-	
E1	GPIO47	FX3_FPGA_GPIO0	AA10	1.8V	
E5	GPIO48	FX3_FPGA_GPIO1	AB9	1.8V	
E4	GPIO49	FX3_FPGA_GPIO2	AG8	1.8V	
D1	GPIO50	FX3_FPGA_GPIO3	AK3	1.5V	
D2	GPIO51	FX3_FPGA_GPIO4	AJ4	1.5V	
D3	GPIO52	FX3_FPGA_GPIO5	AJ3	1.5V	
D4	GPIO53	FX3_SPI_SCLK	P20	2.5V/3.3V	
C1	GPIO54	FX3_SPI_FLASH_SS	-	-	Connected to
					FX3 memory
					through header
<u>C2</u>	CDIO55	EV2 CDI MICO	M21	2 511/2 211	J28
D5	GPIO55	FX2_SPI_WISU	N20	$2.3 \sqrt{3.3 }}}}} } } } } } } } } } } } } } } } $	
D_3	GPIO57	FA5_5P1_W051	IN20	2.3 V/3.3 V	
<u> </u>	GPIU3/	-	-	-	
	SSKAW	FX2_USD_SSKA_P	-	-	
A4	SSKAF	FAJ_USD_SSKA_N	-	-	
AO	SSIAM	$\frac{\Gamma \Lambda 3 U S D S S I \Lambda I U P}{\Gamma V 2 U S D S S T V I C N}$	-	-	
AJ D2	D usb2	FA5_056_551A_IC_N	-	-	USD2 presiden
D 3	r_usus	-	-	-	resistor
C9	OTG ID	FX3 USB OTG ID	-	-	
A9	DP	FX3 USB D P	-	-	
A10	DM	FX3 USB D N	-	-	
	1		1	1	

Chip	Chip	Schematic signal name	FPGA	I/O	Comment
pin (JC42)	reference (IC42)		pin	standard	
(IC+2) C8	R_usb2	-	-	-	USB2 precision
					resistor
E11	VBUS	FX3_VBUS	-	-	
B2	FSLC[0]	-	-	-	10k pulldown
					for 19.2MHz
					crystal selection
C6	XTALIN	CYUSB_XTAL_P	-	-	
C7	XTALOUT	CYUSB_XTAL_N	-	-	
B4	FSLC[1]	-	-	-	10k pulldown
E6	FSLC[2]	-	-	-	for 19.2MHz
					crystal selection
D7	CLKIN	-	-	-	
D6	CLKIN_32	-	-	-	
D9	I2C_SCL	FX3_I2C_SCL/ I2C_SCL	AG23	1.5V	Voltage level
D10	I2C_SDA	FX3_I2C_SDA/ I2C_SDA	AH22	1.5V	reduced to
					connect to
					FPGA. Net
					labels on FPGA
					side:
					12C_SCL_LS,
57					I2C_SDA_LS
E7	TDI	FX3_JTAG_TDI	-	-	10-pin JTAG
C10	TDO	FX3_JTAG_TDO	-	-	connector J29
B11	TRST#	FX3_JTAG_TRST	-	-	
E8	TMS	FX3_JTAG_TMS	-	-	
F6	TCK	FX3_JTAG_TCK	-	-	
D11	O[60]	-	-	-	

2.2.2.4 ADC

There is one Dual-Channel 14-Bit, analog-to-digital converter (ADS4246 – IC37) mounted on board. ADC analog input is connected to RX BB outputs of LMS7002M#1 IC. Digital output pins are connected to FPGA.

The Table 9 lists 14-bit analog to digital converter ADC (IC37) pins, schematic signal name, FPGA interconnections and I/O standard.

Chip pin	Chip reference	Schematic signal name	FPGA	I/O	Comment
(IC37)	(IC37)		pin	standard	
41	DA0_P/DA1	ADC_DA0_P	L10	1.5V	
40	DA0_M/DA0	ADC_DA0_N	L9	1.5V	

Table 9 14-bit ADC (IC37) digital interface pins

43	DA2_P/DA3	ADC_DA1_P	P10	1.5V	
42	DA2_M/DA2	ADC_DA1_N	N11	1.5V	
45	DA4_P/DA5	ADC_DA2_P	N10	1.5V	
44	DA4_M/DA4	ADC_DA2_N	N9	1.5V	
47	DA6_P/DA7	ADC_DA3_P	R12	1.5V	
46	DA6_M/DA6	ADC_DA3_N	R11	1.5V	
51	DA8_P/DA13	ADC_DA4_P	P12	1.5V	
50	DA8_M/DA12	ADC_DA4_N	N12	1.5V	
53	DA10_P/DA9	ADC_DA5_P	M12	1.5V	
52	DA10_M/DA8	ADC_DA5_N	M11	1.5V	
55	DA12_P/DA11	ADC_DA6_P	L11	1.5V	
54	DA12_M/DA10	ADC_DA6_N	K11	1.5V	
61	DB0_P/DB1	ADC_DB0_P	K12	1.5V	
60	DB0_M/DB0	ADC_DB0_N	J12	1.5V	
63	DB2_P/DB3	ADC_DB1_P	E22	1.5V	
62	DB2_M/DB2	ADC_DB1_N	E21	1.5V	
3	DB4_P/DB5	ADC_DB2_P	E10	1.5V	
2	DB4_M/DB4	ADC_DB2_N	D10	1.5V	
5	DB6_P/DB7	ADC_DB3_P	G14	1.5V	
4	DB6_M/DB6	ADC_DB3_N	F14	1.5V	
7	DB8_P/DB13	ADC_DB4_P	H12	1.5V	
6	DB8_M/DB12	ADC_DB4_N	G12	1.5V	
9	DB10_P/DB9	ADC_DB5_P	J14	1.5V	
8	DB10_M/DB8	ADC_DB5_N	H14	1.5V	
11	DB12_P/DB11	ADC_DB6_P	K13	1.5V	
10	DB12_M/DB10	ADC_DB6_N	J13	1.5V	
35	CTRL1	ADC_CTRL1	-	-	
36	CTRL2	ADC_CTRL2	-	-	
34	CTRL3	ADC_CTRL3	-	-	
29	INP_A	ADC_INA_P	-	-	
30	INM_A	ADC_INA_N	-	-	
23	VCM	ADC_VCM	-	-	
57	CLKOUTP/	ADC_CLKOUT_P	L14	1.5V	
	CLKOUT				
56	CLKOUTM/	ADC_CLKOUT_N	L13	1.5V	
10	UNUSED				
19	INP_B	ADC_INB_P	-	-	
20	INM_B	ADC_INB_N	-	-	
25		ADC_CLK_P	-	-	
20		ADC_CLK_N	-	-	
15	SCLK	FPGA_SPI0_SCLK	125	2.5V/3.3V	
14	SDATA	FPGA_SPI0_MOSI	R26	2.5 V/3.3 V	

64	SDOUT	FPGA_SPI0_MISO_ADC	L20	1.5V	
15	SEN	FPGA_SPI0_ADC_SS	E26	1.5V	
12	RESET	FPGA_ADC_RESET	D6	1.5V	

2.2.2.5 DACs

LimeSDR-QPCIe board has two 14-Bit Dual Transmit Digital-To-Analog Converters. By default, analog output pins are connected to TX BB input pads of LMS70002M#1 IC. By changing onboard resistors it can be connected to LMS70002M#2 instead. To connect DACs to LMS70002M#2 TX BB input pads R268, R271, R275, R279, R270, R274, R278, R282 resistors has to be removed and R269, R273, R277, R281, R272, R276, R280, R283 resistors has to be fitted.

The tables below list 14-bit digital to analog converter DAC#1 (IC40 - Table 10) and DAC#2 (IC41 - Table 11) pins, schematic signal name, FPGA interconnections and I/O standard.

Chip	Chip reference	Schematic	FPGA	I/O	Comment
pin	(IC40)	signal name	pin	standard	
(IC40)					
14	DA0	DAC1_DA0	E27	2.5V/3.3V	
13	DA1	DAC1_DA1	F25	2.5V/3.3V	
12	DA2	DAC1_DA2	D28	2.5V/3.3V	
11	DA3	DAC1_DA3	E28	2.5V/3.3V	
10	DA4	DAC1_DA4	F30	2.5V/3.3V	
9	DA5	DAC1_DA5	E30	2.5V/3.3V	
8	DA6	DAC1_DA6	D27	2.5V/3.3V	
7	DA7	DAC1_DA7	C29	2.5V/3.3V	
6	DA8	DAC1_DA8	C30	2.5V/3.3V	
5	DA9	DAC1_DA9	D29	2.5V/3.3V	
4	DA10	DAC1_DA10	D30	2.5V/3.3V	
3	DA11	DAC1_DA11	B29	2.5V/3.3V	
2	DA12	DAC1_DA12	A29	2.5V/3.3V	
1	DA13	DAC1_DA13	B28	2.5V/3.3V	
17, 18	WRTA/WRTIQ,	DAC1_CLK	-	2.5V/3.3V	Clocked from huffor IC55 pin 3
	CLKA/CLKIQ				Clock value passed
					from FPGA to
					buffer from FPGA
					nin M23
					DAC_CLK_WRT
36	DB0	DAC1_DB0	F28	2.5V/3.3V	
35	DB1	DAC1_DB1	F30	2.5V/3.3V	

Table 10 14-bit DAC#1 (IC40) digital interface pins

Chip	Chip reference	Schematic	FPGA	I/O	Comment
pin	(IC40)	signal name	pin	standard	
(IC40)					
34	DB2	DAC1_DB2	J28	2.5V/3.3V	
33	DB3	DAC1_DB3	F29	2.5V/3.3V	
32	DB4	DAC1_DB4	K30	2.5V/3.3V	
31	DB5	DAC1_DB5	K28	2.5V/3.3V	
30	DB6	DAC1_DB6	G29	2.5V/3.3V	
29	DB7	DAC1_DB7	J29	2.5V/3.3V	
28	DB8	DAC1_DB8	J30	2.5V/3.3V	
27	DB9	DAC1_DB9	H27	2.5V/3.3V	
26	DB10	DAC1_DB10	H29	2.5V/3.3V	
25	DB11	DAC1_DB11	H30	2.5V/3.3V	
24	DB12	DAC1_DB12	H26	2.5V/3.3V	
23	DB13	DAC1_DB13	H25	2.5V/3.3V	
19, 20	WRTB/RESETIQ, CLKB/SELECTIQ	DAC1_CLK	-	2.5V/3.3V	Clocked from buffer IC55 pin 3. Clock value passed from FPGA to buffer from FPGA pin M23, DAC_CLK_WRT
48	MODE	DAC1_MODE	J23	2.5V/3.3V	
37	SLEEP	DAC1_SLEEP	J25	2.5V/3.3V	
42	GSET	-	-	3.3V	Hardwired to VCC3P3D_DAC1
43	EXTIO	-	-	-	Connected to 100nF capacitor

 Table 11
 14-bit DAC#2 (IC41) digital interface pins

Chip	Chip reference	Schematic	FPGA	I/O	Comment
pin	(IC41)	signal name	pin	standard	
(IC41)					
14	DA0	DAC2_DA0	R27	2.5V/3.3V	
13	DA1	DAC2_DA1	K26	2.5V/3.3V	
12	DA2	DAC2_DA2	N27	2.5V/3.3V	
11	DA3	DAC2_DA3	P30	2.5V/3.3V	
10	DA4	DAC2_DA4	N29	2.5V/3.3V	
9	DA5	DAC2_DA5	M27	2.5V/3.3V	
8	DA6	DAC2_DA6	M28	2.5V/3.3V	
7	DA7	DAC2_DA7	L26	2.5V/3.3V	
6	DA8	DAC2_DA8	L28	2.5V/3.3V	
5	DA9	DAC2_DA9	L29	2.5V/3.3V	

Chip	Chip reference	Schematic	FPGA	I/O	Comment
pin	(IC41)	signal name	pin	standard	
(IC41)					
4	DA10	DAC2_DA10	L25	2.5V/3.3V	
3	DA11	DAC2_DA11	L30	2.5V/3.3V	
2	DA12	DAC2_DA12	P29	2.5V/3.3V	
1	DA13	DAC2_DA13	N26	2.5V/3.3V	
17, 18	WRTA/WRTIQ, CLKA/CLKIQ	DAC2_CLK	-	2.5V/3.3V	Clocked from buffer IC55 pin 5. Clock value passed from FPGA to buffer from FPGA pin M23, DAC_CLK_WRT
36	DB0	DAC2_DB0	P26	2.5V/3.3V	
35	DB1	DAC2_DB1	N25	2.5V/3.3V	
34	DB2	DAC2_DB2	P25	2.5V/3.3V	
33	DB3	DAC2_DB3	R28	2.5V/3.3V	
32	DB4	DAC2_DB4	R25	2.5V/3.3V	
31	DB5	DAC2_DB5	K27	2.5V/3.3V	
30	DB6	DAC2_DB6	N24	2.5V/3.3V	
29	DB7	DAC2_DB7	M23	2.5V/3.3V	
28	DB8	DAC2_DB8	M22	2.5V/3.3V	
27	DB9	DAC2_DB9	N22	2.5V/3.3V	
26	DB10	DAC2_DB10	R20	2.5V/3.3V	
25	DB11	DAC2_DB11	T21	2.5V/3.3V	
24	DB12	DAC2_DB12	R21	2.5V/3.3V	
23	DB13	DAC2_DB13	R22	2.5V/3.3V	
19, 20	WRTB/RESETIQ, CLKB/SELECTIQ	DAC2_CLK	-	2.5V/3.3V	Clocked from buffer IC55 pin 5. Clock value passed from FPGA to buffer from FPGA pin M23, DAC_CLK_WRT
48	MODE	DAC2_MODE	L23	2.5V/3.3V	
37	SLEEP	DAC2_SLEEP	L24	2.5V/3.3V	
42	GSET	-	-	3.3V	Hardwired to VCC3P3D_DAC2
43	EXTIO	-	-	-	Connected to 100nF capacitor

2.2.2.6 GNSS receiver

LimeSDR-QPCIe board has GNSS receiver module GPS/GNSS M0578 (IC48). External active antenna for this module can be connected to J34 connector. Module is connected to FPGA (IC29), pin connections can be found on Table 12.

GNSS	GNSS chip	Schematic signal	FPGA	I/O	Comment
pin	reference	name	pin	standard	
(IC48)	(IC48)		(IC29)		
9	UART RX	GNSS_RX	K25	3.3V(2.5V)	
10	UART TX	GNSS_TX	K22	3.3V(2.5V)	
6	1PPS	GNSS_TPULSE	T23	3.3V(2.5V)	
13	FIX	GNSS_FIX	R23	3.3V(2.5V)	

 Table 12 GNSS receiver pin connections

2.2.2.7 RTC

For applications which requires accurate time LimeSDR-QPCIe has mounted Real-Time-Clock DS3231 (IC50). Pin connections can be found in Table 13. For I2C interface see chapter **2.2.4.2 I2C interfaces.**

Table 13 RTC pin connections

RTC	RTC chip	Schematic signal	FPGA	I/O	Comment
pin	reference	name	pin	standard	
(IC50)	(IC50)		(IC29)		
16	SCL	I2C_SCL	AG23	1.5V	Connected
					through level
					convertor to
					I2C_SCL_LS.
15	SDA	I2C_SDA	AH22	1.5V	Connected
					through level
					convertor to
					I2C_SDA_LS.
3	INT/SQW	RTC_INT_SQW	K15	1.5V	10k, Pull-UP,
					resistor.
1	32kHz	RTC_32KHZ	H17	1.5V	10k, Pull-UP,
					resistor.

2.2.2.8 Temperature sensor

Board temperature can be measured with LM75 (IC47) temperature sensor using its I2C interface. Pin connections can be found in Table 13. For I2C interface of this sensor see chapter **2.2.4.2 I2C interfaces.**
LM75	LM75 chip	Schematic signal	FPGA	I/O	Comment
pin	reference	name	pin	standard	
(IC47)	(IC47)		(IC29)		
2	SCL	I2C_SCL	AG23	1.5V	Connected
					through level
					convertor to
					I2C_SCL_LS.
1	SDA	I2C_SDA	AH22	1.5V	Connected
					through level
					convertor to
					I2C_SDA_LS.
3	OS	LM75_OS	A28	1.5V	10k, Pull-UP,
					resistor.

2.2.3 Connectors

This chapter describes connectors that exists on LimeSDR-QPCIe v1.2 board.

2.2.3.1 PCI Express connector

For data transfer LimeSDR – QPCIe board has PCI express connector with four lanes. PCI express interface is implemented in FPGA. Pin connection and corresponding signal names are listed in Table 14.

Connector	Schematic signal	FPGA	I/O standard	Comment
pin	name	pin		
B5	PCIE_SMCLK	W12	1.5V	Connected trough voltage level
				shifter to 1.5V
B6	PCIE_SMDAT	V12	1.5V	Connected through voltage
				level shifter to 1.5V
B11	PCIE_WAKEn	G26	3.3V	Signal is disconnected with not
				fitted R100 resistor
B14	PCIE_HSO0_P	AG2	1.5-V PCML	
B15	PCIE_HSO0_N	AG1	1.5-V PCML	
B19	PCIE_HSO1_P	AE2	1.5-V PCML	
B20	PCIE_HSO1_N	AE1	1.5-V PCML	
B23	PCIE_HSO2_P	AC2	1.5-V PCML	
B24	PCIE_HSO2_N	AC1	1.5-V PCML	
B27	PCIE_HSO3_P	AA2	1.5-V PCML	
B28	PCIE_HSO3_N	AA1	1.5-V PCML	
A11	PCIE_PERSTn	W24	3.3V	
A13	PCIE_REFCLK_P	W8	HCSL	
A14	PCIE_REFCLK_N	W7	HCSL	

Table 14 PCIe connector pins

A16	PCIE_HSI0_P	AF4	1.5-V PCML	AC coupled
A17	PCIE_HSI0_N	AF3	1.5-V PCML	AC coupled
A21	PCIE_HSI1_P	AD4	1.5-V PCML	AC coupled
A22	PCIE_HSI1_N	AD3	1.5-V PCML	AC coupled
A25	PCIE_HSI2_P	AB4	1.5-V PCML	AC coupled
A26	PCIE_HSI2_N	AB3	1.5-V PCML	AC coupled
A29	PCIE_HSI3_P	Y4	1.5-V PCML	AC coupled
A30	PCIE_HSI3_N	Y3	1.5-V PCML	AC coupled

2.2.3.2 LVDS connector

J30 is dedicated connector for FPGA transceiver applications.

Connector	Schematic signal	FPGA	I/O standard	Comment
pin	name	pin		
1	GND	-		
3	EXT_GXB_RX6_P	R2	Depends from	
5	EXT_GXB_RX6_N	R1	design	
7	GND	-		
9	EXT_GXB_TX6_P	P4	Depends from	AC Coupled
11	EXT_GXB_TX6_N	P3	design	AC Coupled
13	GND	-		
15	EXT_GXB_CLK_P	P8	Depends from	
17	EXT_GXB_CLK_N	N7	design	
19	GND	-		
2	GND	-		
4	EXT_GXB_RX7_P	N2	Depends from	
6	EXT_GXB_RX7_N	N1	design	
8	GND	-		
10	EXT_GXB_TX7_P	M4	Depends from	AC Coupled
12	EXT_GXB_TX7_N	M3	design	AC Coupled
14	GND	-		
16	VCC5P0(VCC3P3)	-		
18	VCC5P0(VCC3P3)	-		
20	GND	-		

2.2.3.3 PMOD connectors

Two 10 pin 0.1" right angle PMOD connectors (J31, J32) are connected to the FPGA. A complete pinout description, dedicated FPGA pins and their I/O standard is presented in the tables below.

 Table 15. FPGA PMOD#A connector pins

Connector	Schematic net name	FPGA pin	I/O standard	Comment
pin				
1	PMOD_A_PIN1_LS	AD12	1.5V	
2	PMOD_A_PIN2_LS	AE10	1.5V	
3	PMOD_A_PIN3_LS	AF10	1.5V	
4	PMOD_A_PIN4_LS	AD13	1.5V	Level shifter (1.5V to
7	PMOD_A_PIN7_LS	AE12	1.5V	3.3V) between FPGA
8	PMOD_A_PIN8_LS	AE13	1.5V	and connector
9	PMOD_A_PIN9_LS	AJ2	1.5V	
10	PMOD_A_PIN10_LS	AJ1	1.5V	
5, 11	VCC3P3	-	1.5V	
6, 12	GND	-	GND	

 Table 16. FPGA PMOD#B connector pins

Connector	Schematic net name	FPGA pin	I/O standard	Comment
pin				
1	PMOD_B_PIN1_LS	AF20	1.5V	
2	PMOD_B_PIN2_LS	AG21	1.5V	
3	PMOD_B_PIN3_LS	AF21	1.5V	
4	PMOD_B_PIN4_LS	AD20	1.5V	Level shifter (1.5V to
7	PMOD_B_PIN7_LS	AK27	1.5V	3.3V) between FPGA
8	PMOD_B_PIN8_LS	AE22	1.5V	and connector
9	PMOD_B_PIN9_LS	AC21	1.5V	
10	PMOD_B_PIN10_LS	AH26	1.5V	
5, 11	VCC3P3	-	1.5V	
6, 12	GND	-	GND	

2.2.4 Low Speed Interfaces

This chapter describes low speed interfaces on LimeSDR-QPCIe v1.2 board which are dedicated to communicate between various board components.

LimeSDR-QPCIe board low speed interface is divided into FPGA-RF and FPGA-FX3 groups and are presented in Figure 6 and Figure 7. The latter block diagrams depict the main ICs, corresponding IC pin numbers, data buses and serial protocol addresses.

Figure 6 LimeSDR-QPCIe v1.2 FPGA-RF circuit low speed interface block diagram

pLimeSDR-QPCIe board peripherals can be controlled via USB interface. All commands that comes from USB are firstly processed by FX3 controller. I2C and multiple SPI interfaces provide connection to various on-board ICs, such as temperature sensor, port expander, clock generator, memory and real-time clock (RTC).

Figure 7 LimeSDR-QPCIe v1.2 FPGA-FX3 low speed interface block diagram

2.2.4.1 SPI interfaces

There are several SPI interfaces with their slave devices:

- FX3_SPI Master of this bus is CYUSB3013 (IC42) and this bus has these slave devices:
 - Flash memory M25P40 (IC43) dedicated for FX3 firmware;
 - Flash memory W25Q128 (IC30) or S25FL128 (IC32) dedicated for FPGA configuration file. Using switch (IC31) flash memory is switched from FPGA to FX3_SPI BUS. Then flash content is updated and flash memory is switched back to FPGA. This is done when it is needed to update FPGA gateware in flash memory.
 - FPGA (IC29) If SPI slave is implemented in FPGA logic it can be accessed through FX3_SPI interface.

FX3 pin (IC42)	FX3 chip reference (IC42)	Schematic signal name	FPGA pin (IC29)	I/O standard	Comment
D4	SPI_SCK	FX3_SPI_SCLK	P20	3.3V	
D5	SPI_MOSI	FX3_SPI_MOSI	N20	3.3V	
C2	SPI_MISO	FX3_SPI_MISO	M21	3.3V	

Table	17	FX3	SPI	interface

F5	GPIO[46]	FX3_SPI_FPGA_SS	AG22	3.3V	
F2	GPIO[45]	FX3_SPI_AS_SS	-	3.3V	
C1	SPI_SSN	FX3_SPI_FLASH_SS	-	3.3V	

- FPGA_SPI0 master of this interface is FPGA (IC29), slave devices of this interface:
 - RFIC LMS7002M (IC1)
 - RFIC LMS7002M (IC2)
 - 14-bit ADC ADS4246 (IC37)
 - XO VC DAC AD5662 (IC54)
 - Phase detector ADF4002 (IC53)

Schematic signal name	FPGA	I/O	Comment
	pin	standard	
	(IC29)		
FPGA_SPI0_SCLK	T25	2.5V(3.3V)	
FPGA_SPI0_MOSI	R26	2.5V(3.3V)	
FPGA_SPI0_MISO_LMS1	R30	2.5V(3.3V)	
FPGA_SPI0_MISO_LMS2	V30	2.5V(3.3V)	
FPGA_SPI0_MISO_ADC	L20	1.8V	
FPGA_SPI0_LMS1_SS	V29	2.5V(3.3V)	
FPGA_SPI0_LMS2_SS	U29	2.5V(3.3V)	
FPGA_SPI0_ADC_SS	E26	1.5V	Configure FPGA output as Open-
			Drain
FPGA_SPI0_DAC_SS	G23	1.5V	Configure FPGA output as Open-
			Drain
FPGA_SPI0_ADF_SS	E25	1.5V	Configure FPGA output as Open-
			Drain

FPGA_SPI1: master of this interface is FPGA (IC29), slave devices of this interface:
 Flash memory M25P40 (IC46)

 Table 18 FPGA_SPI1 interface

Schematic signal name	FPGA	I/O	Comment
	pin (IC29)	standard	
FPGA_SPI1_SCLK_LS	AF13	1.5V	Connected through voltage level shifter. Net label on memory side FPGA_SPI1_SCLK
FPGA_SPI1_MOSI_LS	AG12	1.5V	Connected through voltage level shifter. Net label on memory side FPGA_SPI1_MOSI
FPGA_SPI1_MISO_LS	AB12	1.5V	Connected through voltage level shifter. Net label on memory side FPGA_SPI1_MISO

FPGA_SPI1_FLASH_SS_L	AB13	1.5V	Connected	through	voltage	level
S			shifter. Net	label on	memory	side
			FPGA_SPI1	_FLASH_S	SS	

• **FPGA_SPI2:** master of this interface is FPGA (IC29), slave devices of this interface: • 6x ADC (IC18, IC20, IC23, IC25, IC26, IC28) dedicated for onboard RSSI use.

Table 17 FT GA ST 12 Interface	Table	19	FPGA	SPI2	interface
--------------------------------	-------	----	------	------	-----------

Schematic signal name	FPGA	I/O	Comment
	pin	standard	
	(IC29)		
FPGA_SPI2_SCLK_LS	AK15	1.5V	Connected through voltage level shifter
			and clock buffer to all six ADC. Net
			label after level shifter
			FPGA_SPI2_SCLK. Fanouts through
			clock buffer to nets:
			FPGA_SPI2_LMS1_RX1_I_SCLK
			FPGA_SPI2_LMS1_RX1_Q_SCLK
			FPGA_SPI2_LMS2_RX2_I_SCLK
			FPGA_SPI2_LMS2_RX1_Q_SCLK
			FPGA_SPI2_LMS2_RX1_I_SCLK
	15	1	FPGA_SPI2_LMS2_RX2_Q_SCLK
FPGA_SPI2_LMS1_RX1_I	J'/	1.5V	
_MISO	1.2	4	
FPGA_SPI2_LMS1_RX1_	A3	1.5V	
Q_MISO	1115	1	
FPGA_SPI2_LMS2_RX1_I	H15	1.5V	
	Go	1	
FPGA_SPI2_LMS2_RX1_	G9	1.5V	
Q_MISO	007	1 517	
FPGA_SPI2_LMS2_RX2_I	C27	1.5V	
	54	1 517	
FPGA_SPI2_LMS2_RX2_	F0	1.5V	
Q_MISU	A 117	1 637	
FPGA_SPI2_LMS_RX_DE	AJI'/	1.5V	
T_SS			

2.2.4.2 I2C interfaces

Board has three independent I2C interfaces: I2C, LMS1_I2C and LMS2_I2C.

I2C – master of this interface can be either FX3 (IC42) or either FPGA (IC29). Master selection is done through R287 and R288 resistors. By default, master is FX3 (resistors

fitted). To select FPGA as master, remove R287 and R288 resistors. This interface has several slave devices which are listed in Table 20.

- RTC DS3231 (IC50);
- EEPROM M24128 (IC51);
- Temperature sensor LM75 (IC47), EEPROM and clock generator. Information for slave devices are provided in Table 20, signal connectivity information is in Table 21.

I2C slave device	Slave	I2C address	I/O standard	Comment
	device			
IC47	Temperature	1001000RW	3.3V	LM75
	sensor			
IC51	EEPROM	1010000RW	3.3V	M24128
IC57	Clock	110000RW	3.3V	Si5351C
	generator			
IC50	Real-time	1101000RW	3.3V	DS3231
	clock (RTC)			

 Table 20. I2C interface devices

Table 21 I2C interface pins

Schematic signal name	FPGA pin (IC29)	FX3 pin (IC42)	I/O standard	Comment
I2C_SDA_LS	AH22	-	1.5V	Connected through level converter to I2C_SDA. Remove R287 and R288 to use FPGA as I2C master.
I2C_SCL_LS	AG23	-	1.5V	Connected through level converter to I2C_SCL. Remove R287 and R288 to use FPGA as I2C master.
FX3_I2C_SDA	-	D9	3.3V	Connected through R287 to I2C_SDA.
FX3_I2C_SCL	-	D10	3.3V	Connected through R288 to I2C_SCL.

• LMS1_I2C: this interface has two EEPROMs. This interface is only accessible from LMS7002M (IC1). In Table 22 are listed all LMS1_I2C slave devices and their information. In Table 23 listed pin connections.

 Table 22. LMS1_I2C interface devices

I2C slave	Slave device	I2C address	I/O standard	Comment
device				

IC3	EEPROM	for	1 0 1 0 A2 A1 A0 RW	2.5V(3.3V)	M24128
	LMS7	MCU			
	firmware				
IC4	EEPROM		1 0 1 0 A2 A1 A0 RW	2.5V(3.3V)	24FC512

Table 23 LMS1_I2C pins

Schematic signal name	RFIC	I/O	Comment
	pin	standard	
	(IC1)		
LMS1_I2C_SDA	D26	2.5V(3.3V)	Accessible only from IC1
LMS1_I2C_SCL	C27	2.5V(3.3V)	Accessible only from IC1

• LMS2_I2C: this interface has two EEPROMs. This interface is only accessible from LMS7002M (IC2). In Table 24 are listed all LMS1_I2C slave devices and their information. In Table 25 listed pin connections.

Table 24. LMS2_I2C interface devices

I2C slave device	Slave device	I2C address	I/O standard	Comment
IC5	EEPROM f LMS7 MC firmware	r 1010 A2 A1 A0 RW	2.5V(3.3V)	M24128
IC6	EEPROM	1 0 1 0 A2 A1 A0 RW	2.5V(3.3V)	24FC512

Table 25 LMS2_I2C pins

Schematic signal name	RFIC	I/O	Comment
	pin	standard	
	(IC2)		
LMS2_I2C_SDA	D26	2.5V(3.3V)	Accessible only from IC2
LMS2_I2C_SCL	C27	2.5V(3.3V)	Accessible only from IC2

2.2.4.3 UART

UART interface is dedicated for communication between FPGA and GNSS receiver GPS/GNSS M0578 (IC48).

Schematic signal name	FPGA pin (IC29)	I/O standard	Comment
GNSS_RX	K25	3.3V(2.5V)	
GNSS_TX	K22	3.3V(2.5V)	

Table 26 GNSS UART interface pins

2.2.5 User I/O

This chapter describes available inputs and outputs of LimeSDR-QPCIe v1.2 board which can be used for user applications.

2.2.5.1 FPGA switch

4 poles slide switch SW2 is connected to FPGA and can be used to implement additional functionality which requires input control. Each switch line has external pull up resistors. When switch is in position "On", it pulls down the line to logic '0' level.

Figure 8 LimeSDR-QPCIe v1.2 4 poles slide switch

In Error! Reference source not found. are listed each switch line and correspond FPGA pins.

Switch	Schematic	FPGA pin	I/O standard
pole	signal name	(IC29)	
1	FPGA_SW0	H7	1.5V
2	FPGA_SW1	A2	1.5V
3	FPGA_SW2	E6	1.5V
4	FPGA_SW3	F8	1.5V

Table 27. FPGA Switch connections

2.2.5.2 Indication LEDs

LimeSDR-QPCIe board comes with four single colour (green) general purpose LEDs, one general purpose dual colour (red-green) LED, one green LED informing about successful FPGA configuration and one for power indication.

Power indication Figure 9 LimeSDR-QPCIe v1.2 indication LEDs

All LEDs are connected to FPGA and their function can be changed except for LED1. Default LEDs functions and other information are listed in the table below.

Tuble 20 Den	tait functions of EEDs	1		
Board	Schematic name	Board label	Туре	Description
Reference				
LED1	FPGA_CONF_DONE	FPGA CONF	FPGA	LED lights up after
			status	successful FPGA
				configuration
LED2,	FPGA_LED1	FPGA LED1	General	General purpose
LED3,	FPGA_LED2	FPGA LED2	purpose	reconfigurable single colour
LED4,	FPGA_LED3	FPGA LED3		LED.
LED5	FPGA_LED4	FPGA LED4		
LED6	FPGA_LED5_G,	FPGA LED5	General	General purpose
	FPGA_LED5_R		purpose	reconfigurable dual colour
				(red-green) LED.
LED7	VCC3P3, GND	BOARD	Power	LED lights up when
		POWER	indication	VCC3P3 power rail is
				active.

Table 28 Default functions of LEDs

2.2.6 RF Loopback Control

There is RF loopback circuit for RF transceivers which can be controlled from FPGA through shift registers 74HC595 (IC7 and IC8). Pin connection can be found in Table 29.

Schematic signal name	FPGA	I/O	Comment			
	pin	standard				
	(IC29)					
SR_SCLK_LS	AA13	1.5V	Connected through level converter to			
			SR_SCLK.			
SR_DIN_LS	AJ5	1.5V	Connected through level converter to			
			SR_DIN.			
SR_LATCH_LS	B26	1.5V	Connected through level converter to			
			SR_LATCH.			

 Table 29 Pin connection of shift registers

 Table 30 LMS#1 loopback control truth table

IC7 pin reference							Result	
Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	
Х	Х	Х	X	L	Η	Х	Х	LMS#1 TX1_2 \rightarrow U.FL (J13)
Х	Х	Х	Х	Η	L	Х	X	LMS#1 TX1_2 \rightarrow LMS#1 RX1_H
Х	Х	Η	Х	Х	Х	Х	Х	LMS#1 TX1_2 shunt to ground on
Х	Х	L	Х	Х	Х	Х	X	LMS#1 TX1_2 shunt to ground off
Х	Х	Х	Η	Х	Х	Х	Х	LMS#1 TX1_2 \rightarrow RX1_H attenuation -40 dB
Х	Х	Х	L	Х	Х	Х	Х	LMS#1 TX1_2 \rightarrow RX1_H attenuation -25 dB
Х	Х	Х	Х	Х	Х	L	Η	LMS#1 TX2_2 \rightarrow U.FL (J17)
Х	Х	Х	X	Х	Х	Η	L	LMS#1 TX2_2 \rightarrow LMS#1 RX2_H
Η	Х	Х	X	Х	Х	Х	X	LMS#1 TX2_2 shunt to ground on
L	Х	Х	Х	Х	Х	Х	Х	LMS#1 TX2_2 shunt to ground off
Х	Н	X	X	Х	Х	X	X	LMS#1 TX2_2 \rightarrow RX2_H attenuation -40 dB
Х	L	Х	X	Х	Х	Х	X	LMS#1 TX2_2 \rightarrow RX2_H attenuation -25 dB
Note 1:	Schen	natic sign	als corre	sponds to	IC7 pin	s as below	w:	
	Q0 - I	LMS1_T	X2_2_LE	3_SH	Q1 - LN	MS1_TX	2_2_LB_	$\begin{array}{ccc} AT & Q2 - LMS1_TX1_2_LB_SH & Q3 - LMS1_TX1_2_LB_AT \\ C & LMS1_TX2_2LB_B_H & Q7 - LMS1_TX2_2LB_AT \end{array}$
	Q0 – I Q4 – I	LMS1_T	X2_2_LE X1_2_LE	з_SH 3_Н	Q1 - LN Q5 - LN	MS1_TX MS1_TX	2_2_LB_ 1_2_LB_	AT Q2 – LMS1_TX1_2_LB_SH Q3 – LMS1_TX1_2_LB_AT L Q6 – LMS1_TX2_2_LB_H Q7 – LMS1_TX2_2_LB_L

Table 31 LMS#	2 sloopback	control truth table
---------------	-------------	---------------------

IC8 pin reference					nce			Result
Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	
X	х	Η	L	Х	Х	Х	Х	LMS#2 TX1_2 \rightarrow U.FL (J14)
Х	Х	L	Η	Х	Х	Х	Х	LMS#2 TX1_2 \rightarrow LMS#2 RX1_H
Х	Х	Х	Х	Х	Н	Х	Х	LMS#2 TX1_2 shunt to ground on
Х	Х	Х	Х	Х	L	Х	Х	LMS#2 TX1_2 shunt to ground off
Х	Х	Х	Х	Х	Х	Н	Х	LMS#2 TX1_2 \rightarrow RX1_H attenuation -40 dB
Х	Х	Х	Х	Х	Х	L	Х	LMS#2 TX1_2 \rightarrow RX1_H attenuation -25 dB
Η	L	Х	Х	Х	Х	Х	Х	LMS#2 TX2_2 \rightarrow U.FL (J18)

IC8 pin reference							Result	
Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	
L	Η	Х	Х	Х	Х	Х	Х	LMS#2 TX2_2 \rightarrow LMS#2 RX2_H
Х	Х	Х	Х	Х	Х	Х	Η	LMS#2 TX2_2 shunt to ground on
Х	Х	Х	Х	Х	Х	Х	L	LMS#2 TX2_2 shunt to ground off
Х	Х	Х	Х	Н	Х	Х	Х	LMS#2 TX2_2 \rightarrow RX2_H attenuation -40 dB
Х	Х	Х	Х	L	Х	Х	Х	LMS#2 TX2_2 \rightarrow RX2_H attenuation -25 dB
Note 1:	Q0 – 1	LMS2_T	X2_2_LF	B_L	Q1 – LN	AS2_TX	2_2_LB_	H Q2 – LMS2_TX1_2_LB_L Q3 – LMS2_TX1_2_LB_H
$Q4 - LMS2_TX2_2_LB_AT$ $Q5 - LMS2_TX1_2_LB_3$			MS2_TX	1_2_LB_	_SH Q6 – LMS2_TX1_2_LB_AT Q7 – LMS2_TX2_2_LB_SH			

The table below describes RF transceiver LMS7002#1 and LMS7002#2 external loopback configuration, pins, schematic signal name, FPGA interconnections and I/O standard.

Loopback	RF	Schematic control	Shift	FPGA-	Comment
for	switch	signal name	register	shift	
			pin	register	
				pins	
LMS7002	IC10,	LMS1_TX1_2_LB_L	IC7.Q5	AJ5,	When LMS1_TX1_2_LB_L
#1 (IC1)	IC12	LMS1_1X1_2_LB_H	IC7.Q4	AAI3,	is high and
				B20 (through	then I MS#1 TX1 2
				level	(I MS1 I OOPBACK TX12)
				shifter	net) is fed to U FL connector
				IC9)	J13. When
					LMS1_TX1_2_LB_L is low
					and
					LMS1_TX1_2_LB_H is high
					then LMS#1 TX1_2
					(LMS1_LOOPBACK_1X12
					net) is fed to LMS#1 RX1_H
					(LMS1_LOOPBACK_KATH
	IC14	IMS1 TY2 2 IB I	IC7 07	-	When LMS1 TX2 2 LB L
	IC14, IC15	LMS1_TX2_2_LB_L LMS1_TX2_2_LB_H	IC7.06		is high and
	1010		10,120		LMS1 TX2 2 LB H is low
					then $LMS#1TX2_2$
					(LMS1_LOOPBACK_TX22
					net) is fed to U.FL connector
					J17. When
					LMS1_TX2_2_LB_L is low
					and LMS1 TY2 2 LD LLie high
					$L_{NIS1}_{IA2}_{LD}_{IS}$ IS Mign then I MS#1 TY2 2
					(LMS1 LOOPBACK TX22
					net) is fed to LMS#1 RX2 H
					(LMS1_LOOPBACK_RX2H
					net)

 Table 32 LMS7002 (IC1, IC2) external loopback configuration

	VT3, VT9	LMS1_TX1_2_LB_SH	IC7.Q2	Loopback shunt to ground for high isolation. When high – shunt active, when low – shunt off.
	VTI	LMS1_TX1_2_LB_AT	1C7.Q0	When LMS1_TX1_2_LB_AT is low, TX1_2 to RX1_H loopback attenuation is set to -40 dB. When LMS1_TX1_2_LB_AT is high, loopback attenuation is set to -25 dB.
	VT7	LMS1_TX2_2_LB_AT	IC7.Q1	When LMS1_TX2_2_LB_AT is low, TX2_2 to RX2_H loopback attenuation is set to -40 dB. When LMS1_TX2_2_LB_AT is high, loopback attenuation is set to -25 dB.
LMS7002 #2 (IC2)	IC11, IC13	LMS2_TX1_2_LB_L LMS2_TX1_2_LB_H	IC8.Q2 IC8.Q3	When LMS2_TX1_2_LB_L is high and LMS2_TX2_2_LB_H is low then LMS#2 TX1_2 (LMS2_LOOPBACK_TX12 net) is fed to U.FL connector J14. When LMS2_TX1_2_LB_L is low and LMS2_TX1_2_LB_H is high then LMS#2 TX1_2 (LMS2_LOOPBACK_TX12 net) is fed to LMS#2 RX1_H (LMS2_LOOPBACK_RX1H net)
	IC15, IC17	LMS2_TX2_2_LB_L LMS2_TX2_2_LB_H	IC8.Q0 IC8.Q1	When LMS2_TX2_2_LB_L is high and LMS2_TX2_2_LB_H is low then LMS#2 TX2_2 (LMS2_LOOPBACK_TX22 net) is fed to U.FL connector J18. When LMS2_TX2_2_LB_L is low and LMS2_TX2_2_LB_H is high then LMS#2 TX2_2 (LMS2_LOOPBACK_TX22 net) is fed to LMS#2 RX2_H (LMS2_LOOPBACK_RX2H net)

VT11, VT12	LMS2_TX2_2_LB_SH	IC8.Q7	Loopback shunt to ground for high isolation. When high – shunt active, when low – shunt off.
VT2	LMS2_TX1_2_LB_AT	IC8.Q6	When LMS2_TX1_2_LB_AT is low, TX1_2 to RX1_H loopback attenuation is set to -40 dB. When LMS2_TX1_2_LB_AT is high, loopback attenuation is set to -25 dB.
VT8	LMS2_TX2_2_LB_AT	IC8.Q4	When LMS2_TX2_2_LB_AT is low, TX2_2 to RX2_H loopback attenuation is set to -40 dB. When LMS2_TX2_2_LB_AT is high, loopback attenuation is set to -25 dB.

2.2.7 Board Temperature Control

LimeSDR-QPCIe has integrated temperature sensor (IC47) which controls FAN to keep board in operating temperature range. FAN has dedicated holes for mounting over the main digital ICs (FPGA, DDRs, DACs and ADC) and must be connected to J33 (0.1" pitch) connector.

Fan will be turned on when board heats up to 55° C and will be turned off when the temperature reduces to 45° C.

Figure 10 FAN control temperature hysteresis

Measured temperature value can read by using LimeSuiteGUI as described in chapter "3.13 Reading Board Temperature".

LimeSDR-QPCIe board comes with a dedicated 60mm DC FAN mounting space. Three M3 exposed copper holes (connected to board GND plane) and a space for a standoff are provided and are shown in *Figure* 11. The hole centre to hole centre distance is 50mm. The FAN is controlled via J33 (0.1" pitch) connector which can provide either 12V (default) or a 5V supply rail. The gate of the FAN driving MOSFET is connected to IC29 (FPGA) pin J22 (2.5V/3.3V bank).

Figure 11 LimeSDR-QPCIe v1.2 Dedicated FAN mounting space

2.2.8 Clock Distribution

LimeSDR-QPCIe board clock distribution block diagram is presented in Figure 12.

Figure 12 LimeSDR-QPCIe v1.2 board clock distribution block diagram

2.2.8.1 Main clock sources

There are various crystal oscillators with various frequencies mounted on LimeSDR-QPCIe board. The programmable clock generator IC37 (Si5351C [link]) can generate any reference clock frequency, starting from 8 kHz – 160 MHz, for FPGA and LMS PLLs. A real-time clock (RTC) chip (IC50) is also included on the LimeSDR-QPCIe board. The output of IC50 is connected to the FPGA pin H17. Main clock sources and destinations are listed in Table 33.

Src.	Dest.	Schematic net name	Freq.	I/O standar d	FPGA pin	Description
	FPGA	SI_CLK0	8kHz- 160MHz	2.5/3.3V	P22	

Table 33. LimeSDR-QPCIe clock sources and destinations

Src.	Dest.	Schematic net name	Freq.	I/O	FPGA	Description
				standar	pin	
Clk		SI CI K1	8kH7-	u 2 5/3 3V	P23	
Gen		SI_CLKI	160MHz	2.5/5.5 V	1 23	
(IC57)		EXT GXB CLK P	8kHz-	LVDS	P8	Single-ended
× ,			160MHz		-	converted to
		EXT GXB CLK N	8kHz-	-	N7	differential
			160MHz			through IC56
		SI_CLK4	8kHz-	-	-	Can be
	Clk.		160MHz			selected as
	Buff.					IC52 CLKin1
	(IC52)					clock source
	FPGA	SI_CLK6	8kHz-	1.5V	AB18	
			160MHz			
		SI_CLK7	8kHz-	1.5V	AC15	
EV2			160MHz	1 517	AD1C	
FX3	FPGA	FX3_PCLK	66MHZ,	1.5 V	ABIO	
(IC42) CNSS	EDC A	CNSS TDUISE	100MHZ *	2 21/2 5	T22	
(IC48)	ггоа	GNSS_IFULSE		$V = \frac{5.5 \sqrt{2.5}}{V}$	125	
RTC	FPGA	RTC 32KH7	32kHz	1 5V	H17	
(IC50)	110/1		JZKIIZ	1.5 V	1117	
XO5	FPGA	CLK100 FPGA	100MHz	1.5V	Y15	
XO6	FPGA	CLK125_FPGA	125MHz	1.5V	L15	
XO7	FPGA	CLK125_FPGA_TOP_P	125MHz	LVDS	H19	
		CLK125_FPGA_TOP_N			J18	
XO8	FPGA	CLK125_FPGA_BOT_P	125MHz	LVDS	AB14	
		CLK125_FPGA_BOT_N			AC14	
XO9	FPGA	CLK125_FPGA_REF_P	125MHz	LVDS	R8	
		CLK125_FPGA_REF_N			R7	
FPGA	DAC	DAC_CLK_WRT	*	2.5/3.3V	M29	Goes through
	(IC40,					clock buffer
~ ~ ~	IC41)					(IC21)
Clk.	FPGA	CLK_LMK_FPGA_IN	*	1.5V	AB17	
Buff.						
(IC52)			*	25/221	1122	
KFIC (IC1)	FPGA	LMS1_MCLK1	*	2.5/3.3V	U22	
	DEIC	LIVISI_IVIULKZ	*	2.5/3.3V	U21 V20	
гроа		LMS1_FCLK1	*	2.3/3.3 V 2.5/2.2 V	1 30 V22	
FDC A		LIVISI_FULK2	*	2.3/3.3 V 2.5/2.2 V	1 22 N21	
ITUA	Buff	T		2.3/3.3 V	11/21	
	(IC52)	1				
	FPGA	LMS2 MCLK1	*	2.5/3.3V	T24	

Src.	Dest.	Schematic net name	Freq.	I/O	FPGA	Description
				standar	pin	
				d		
RFIC		LMS2_MCLK2	*	2.5/3.3V	U23	
(IC2)						
FPGA	RFIC	LMS2_FCLK1	*	2.5/3.3V	W30	
	(IC2)	LMS2_FCLK2	*	2.5/3.3V	AC29	
FPGA	DDR3	DDR3_TOP_CK_P	*	Different	M9	
	(IC33,			ial 1.5-V		
	IC34)	DDR3 TOP CK N	*	SSTL	M8	
				Class I		
FPGA	DDR3	DDR3_BOT_CK_P	*	Different	Y13	
	(IC35,		. tr	ial 1.5-V		
	IC36)	DDR3_BOT_CK_N	*	SSTL	AA14	
				Class I		
FPGA	DAC	DAC_CLK_WRT	*	3.3V	M29	Feeds both
	(IC40,					DAC through
	IC41)					clock buffer
						(IC55)
ADC	FPGA	ADC_CLKOUT_P	*	LVDS	L14	
(IC37)		ADC_CLKOUT_N	*		L13	
FPGA	ADC	ADC_CLK	*	3.3/2.5V	N30	Converted
	(IC37)					from single
						eneded to
						LVDS
						through IC39

* - depends from design

2.2.8.2 Clock buffer source selection

Clock buffer (IC52) presented in Figure 12 provides clock signals for following components:

- LMS7002 transceivers (IC1, IC2);
- FPGA (IC29) pin AB17;
- Phase detector (IC53);
- Clock generator (IC57);
- U.FL connector J35 (REF CLK OUT label on board). To use this output 0R resistor R378 has to be fitted.

For Clock buffer (IC52) there are two possible clock sources (CLKin0 and CLKin1). Source is selected via R375 resistor.

CLKin0 – to select this input as a source for Clock buffer (IC52) R375 resistor has to be removed (removed by default). As a source for this input one of the following high-precision crystal oscillators can be selected:

1. XO1 – 30.72 MHz VCOCXO (precision: ±20 ppb stable)

- 2. XO2 or XO3 30.72 MHz VCTCXO (precision: ±1 ppm initial, ±4 ppm stable);
- 3. XO4 40 MHz VCTCXO (precision: ± 1 ppm initial).

IC52 buffer CLKin0 clock source is selected by one of the 0402 size 0R resistor combinations, required modifications can be found in Table 34.

Source for clock buffer	OR Fit	OR NF	Comment
(IC52) CLKin0 input			
XO1	R364,	R379,	Default selection
	R365	R380,	
		R382,	
		R384	
XO2, X03	R379,	R364,	
	R380	R365,	
		R382,	
		R384	
XO4	R382,	R364,	
	R384	R365,	
		R379,	
		R380	

 Table 34 Crystal oscillator selection for clock buffer (IC52)

CLKin1 – to select this input as a source for Clock buffer (IC52) R375 resistor has to be fitted (removed by default). As a source for this input one of the following sources can be selected:

- 1. Clock generator (IC57)
- 2. U.FL Connector (J36)
- 3. FPGA (IC29) output pin N21

Table 35 Source for clock buffer (IC52) CLKin1 input selection

Source for clock buffer	Schematic net name	0R Fit	OR NF	Comment
(IC52) CLKin1 input				
Clock generator (IC57)	SI_CLK4	R374	R368,	Default
output CLK4			R372	selection
J36 U.FL Connector	REF_CLK_IN	R372	R368,	
			R374,	
			R389	
FPGA (IC29) output pin	CLK_LMK_FPGA_OUT	R368	R372,	
N21			R374	

2.2.8.3 VCTCXO clock tuning

VCTCXO can be tuned by on-board phase detector (IC53, ADF4002 [<u>link</u>]) or by 16-bit DAC (IC54). The on-board phase detector is used to synchronize on-board VCTCXO with external equipment (via J36 U.FL connector) to calibrate frequency error. At the same time only ADF or DAC can control VCTCXO. Both ADF and DAC are connected to FPGA_SPI0 interface. For

details see chapter **2.2.4.1 SPI interfaces**. With valid configuration selection between ADF and DAC is done automatically. When board is powered, by default VCTCXO is controlled by DAC.

2.2.9 Power Distribution

LimeSDR-QPCIe board can be powered from several sources. The first power supply source option is 12V DC through a 2.5mm centre positive barrel connector. The second one is through a standard 6-pin PCIe power connector J38 (0.165" pitch). The last supply source option is the board edge PCIe connector.

LimeSDR-QPCIe board has complex power delivery network consisting of many different power rails with different voltages, filters, power sequences. LimeSDR-QPCIe board power distribution block diagram is presented in *Figure* 13 in two parts.

Figure 13 LimeSDR-QPCIe v1.2 board power distribution block diagrams

Power network power circuit ICs are presented in Figure 14 and Figure 15.

Figure 14 LimeSDR-QPCIe v1.2 board power ICs on TOP side

Figure 15 LimeSDR-QPCIe v1.2 board power ICs on BOTTOM side

3. Getting Started with LimeSDR-USB

3.1 Launching LimeSuiteGUI and Connecting to the LimeSDR-USB Board

First of all, connect LimeSDR-USB board to PC USB3.0 socket. Please go the section 4 "Drivers Installation" to see how to install OS drivers so your PC can see LimeSDR-USB board. In the provided USB Flash there is a folder GUI in which you will find LimeSuiteGUI.exe file. Open it.

Figure 16 Opening LimeSuiteGUI.exe file

To launch LimeSuiteGUI application go to menu and select: Options -> Connection Settings as shown in *Figure 17*.

Figure 17 Opening connection settings

Select LimeSDR-USB board as shown in Figure 18 and press Connect.

Connection Settings
Board connections:
USB 3.0 (LimeSDR-USB) [USB] 9062A00CE2D11
Connect Cancel Disconnect .:i

Figure 18 LimeSuiteGUI select ports

3.2 Loading and Saving Register Settings

In order to load settings, click button Open as shown in Figure 19.

۵							
<u>F</u> ile Optio	ons	Modu	ıles <u>H</u> el	р			
New		0	pen	Sa	ive	● A CH	IANNEL
Calibration	is (RFE	RBB	TRF	TBB	AFE	BIAS
Receiver							
- Gain Cor	rect	or					

Figure 19 Opening LimeSuiteGUI settings file

Select .ini setting file and click Open as shown in Figure 20.

Figure 20 Selecting LimeSuiteGUI settings file

Then click GUI --> Chip button as shown in Figure 21.

Figure 21 Sending LMS7002M settings from GUI to LimeSDR-USB board

If you want load all LMS7002M settings from LimeSDR-USB to GUI, then click button Chip-->GUI as shown in Figure 22.

		Lime	Suite G	UI								
Enable I	мім	0	hip>Gl	JI	GUI>Chip	Res	set					
CLKGE	N S	XR	SXT	Li	meLight & PAD	TxTSP	RxTS	P	CDS			
	Tra	nsmitte	er									
	Ga	Gain Corrector										
▲ ▼	l: <								2047			
•	Q:	<						>	2047			

Figure 22 Sending LMS7002M settings from LimeSDR-USB to GUI

3.3 Quick Test

If there is a need to check if the board is fully working you can run very simple and quick board test. All instruction on how to do it you can find online <u>here</u>. One you see the graph as it show in Figure 23 of W-CDMA signal on FFT Viewer, you know that the board is working.

Figure 23 Performing Quick Test

3.4 Changing TX / RX Frequency

After power up in order to configure LMS7002M Tx or Rx LO to 2140 MHz, do the following:

- 1. Select the **SXR** tab for Receiver or **SXT** tab for Transmitter
- 2. Enable SXR/SXT module
- 3. Type the wanted frequency in Frequency, GHz box. In this case, 800 MHz
- 4. Press **Calculate** followed by **Tune**

See *Figure 24* below to check related controls in the LimeSuiteGUI.

Figure 24 SXR / SXT register setup procedure

3.5 Changing Receiver Gain

Select the RBB tab to configure the PGA gain and baseband filter bandwidths. Follow the configuration steps below:

- 1. Select the A CHANNEL to control channel A
- 2. Select PGA output to output pads. This selection enables receiver analog outputs
- 3. Set PGA gain to -1 dB
- 4. Configure filter bandwidth. Type desired bandwidth and click Tune

See Figure 25 below to check related controls in the LimeSuiteGUI.

File Options Modules Help New Open Save A CHANNEL Step 1 nable MIMO Chip>GUI Galibrations RFE RBB TRF TBB AFE BIAS LDO XBUF CLKGEN SXR SXT LimeLight & PAD TXTSP RXG Coll Direct control Direct control of PDs and ENs PGA output cont Cell Chipe->Step 2 RXLPF RC time constant Resistance 16 UPFL dapacitance value < 12 PIC Low table reference bias current (RBB_LPF) 12 Vuotus table reference bias current (RBB_LPF) 10 TUNE	
Calibrations RFE RBB TRF TBB AFE BIAS LDO XBUF CLKGEN SXR SXT LimeLight & PAD TxTSP RCTSP CDS BIST TRX Gain MCU R3 Controls Power down controls Power down controls Power down controls BB loopback to RXLPF Disabled PGA block PGA block PGA block PGA again -1 dB PGA catput connected to Direct control Direct control of PDs and ENs RXLPF RC time constant Resistance LPFL capacitance value < > 128 LPFL stability passive compensation LPFL capacitance value < > 12 RX Filters RF bandwidth (MHz) TUNE Calibrations Calibrations Calibrations RESP CDS BIST TRX Gain MCU R3 Controls PGA catput connected to Direct control Direct control PGA catput connected to PGA output connected to PGA output connected to PGA output connected to PGA output connected to PGA pedBack capacitor < > 2 PGA output connected to PGA	Cal. Int ADC
✓ LPFH block → PGA input connected to ↓ PFL RBB ✓ ● PFL block → PGA input connected to ↓ PFL RBB ✓ ● PGA gain − 1dB ✓ ✓ ● Direct control ● Direct control of PDs and ENs ● GA feedback capacitor <	1
RXLPF RC time constant Operational amplifier Resistance 16 v LPFH capacitance value > 128 v LPFL capacitance value > 12 v Rx Filters utput stage reference bias current (RBB_LPF) 12 Rx Filters Step 4 efference bias current (PGA) 6	
Nestatice 10 V CPFF stability passive compensation 1 V LPFH capacitance value > 128 LPFL stability passive compensation when 20MHz V LPFL capacitance value > 12 Input stage reference bias current (RBB_LPF) 12 V RF bandwidth (MHz) 10 TUNE Step 4 efference bias current (PGA) 6 V	
LPFL capacitance value > 12 Input stage reference bias current (RBB_LPF) 12 v Rx Filters utnut stage reference bias current (RBB_LPF) 12 v RF bandwidth (MHz) 10 TUNE Step 4 efference bias current (PGA) 6 v	
Rx Filters Uutuut stage reference bias current (RBB_LPF) 12 v RF bandwidth (MHz) 10 TUNE Step 4 efference bias current (PGA) 6 v	
RF bandwidth (MHz) 10 TUNE Step 4 eference bias current (PGA) 6 v	
iput stage reference bias current (PGA) 6 v	
PGA stability passive compensation 23 🗸	
19:38:32] INFO: Selected reference clock 30.720 MHz (19:38:32] INFO: Connected Control port: LimeSDR-USB FW:3 HW:4 Protocol:1 GW:2 GW_rev:6 Ref Clk: 30.72 MHz (20:00:40] INFO: SXR frequency set to 800.000000 MHz v	Clear Show Log Log dat

Figure 25 RBB register setup procedure

3.6 Changing Transmitter Output Signal Gain

In the **TBB** tab the baseband gain and filter bandwidth are controlled. Follow the instructions below to set up TBB:

- 1. Select the **A CHANNEL** to control channel A
- 2. Set **Frontend gain** to your wanted
- 3. Configure the base band filter settings. Type desired bandwidth and click Tune and Tune gain

See Figure 26 below to check related controls in the LimeSuiteGUI.

8	Lime Suite GUI		- 🗆 🗙
Eile Options Modules Help New Open Save • A CHANNEL	Step 1 nable MIMO Chip>GUI GUI>C	Chip Reset Temperature: ????? Read Temp	Cal. Int ADC
Calibrations RFE RBB TRF TBB AFE BIAS LDO Power down controls	XBUF CLKGEN SXR SXT LimeLight & Bypass LPF ladder of TBB Bypass LPFS5 filter capacitor banks Disabled Tx BB loopback Disabled Enable Tx IQ analog input Disabled Frontend gain Reference bias current IAMP main bias current sources	x PAD TxTSP RxTSP CDS BIST TRX Gain MCU R3 Co	ontrols
Operational amplifier Output stage bias current low band real pole filter Input stage bias current of low band real pole filter Input stage bias reference current of high band low pass filter Output stage bias reference current of high band low pass filter I 2 v Output stage bias reference of low band ladder filter I 2 v	TxLPF resistor banks LPFH equivalent resistance stage LPFLD equivalent resistance stage LPFS5 equivalent resistance stage Common control signal for all TBB filters	97 • 193 • 76 • 16 •	
Tx Filters RF bandwidth (MHz) 56 TUNE Tune Gain	Step 3		
[19:38:32] INFO: Selected reference clock 30.720 MHz [19:38:32] INFO: Connected Control port: LimeSDR-USB FW:3 HW:4 Protoco [20:00:40] INFO: SXR frequency set to 80.00000 MHz Control port: LimeSDR_USB FW:2 LIM/4 Protoco	1 GW:2 GW_rev:6 Ref Clk: 30.72 MHz		Clear Show Log Log data

Figure 26 TBB register setup procedure

3.7 Load Waveform for Tx Path

The programed FPGA is acting as waveform player for LMS7002M transceiver. In order to load the waveform, select **Modules** from top menu, then **FPGA Controls** from the drop down menu as shown in *Figure* 27.

File Options	Modules Help	
New Calibrations F Power down c LPFH_TBB b LPFHAP_TB LPFS_TBB i UPFS_TBB i Enable TBB Direct control Direct control	FFTviewer ADF4002 Si5351C Programming HPM7 FPGA controls Myriad7 Device Info SPI Board controls	AFE BIAS
 Operational ar Output stage bias Input stage bias 	nplifier ias current low band real pole fil s current of low band real pole fi s reference current of high band	ter ilter low pass filter

Figure 27 Selecting FPGA Control window

New window will appear in the bottom of the GUI, offering you to load supplied waveforms or custom waveforms. Please select to load CW waveform by clicking on **Onetone** button, as shown in *Figure* 28.

FPGA Co	ntrols	-		×
Digital Interface				
Digital Loopba	ack enable			
WFM loader			_	
Onetone	W-CDM	Α		OMIN
Custom	E			
0 %				
Play >	Stop			

Figure 28 Waveform selection

The file loading process to the FPGA is shown by indication bar, see Figure 29.

FPGA Co	ntrols	-		×				
- Digital Interface		1						
🗌 Digital Loopba	ack enable							
WFM loader								
Onetone	W-CDMA MIMO							
Custom	Ē							
100%								
Play >	Stop							

Figure 29 Loaded waveform indication

3.8 Digital Loopback Enable

There is also implemented option to receive data from LMS7002M receiver and stream back on to LMS7002M transmitter. In order to enable this option, click on the 'Digital Loopback enable' check box in the 'FPGA Control' Module Figure 30.

FPGA Con	trols – 🗆 🗙
Digital Interface	
Digital Loopbac	k enable
WFM loader	
Onetone	W-CDMA MIMO
Custom	
0 %	
Play >	Stop

Figure 30 Select Digital Loopback enable

3.9 Run FTT Viewer

FFTviewer module is a part of LimeSuiteGUI software. To run FFTviewer, go to top menu, select **Modules** and choose **FFTviewer** as shown in Figure 31.

											L
File Options	Modul	es	Help	_							
New	F	FFTviewer			CH	IANNEL	О В СН	ANNEL	Enabl	e Ml	мо
Calibrations F Power down c LPFH_TBB t LPFLAMP_TI LPFLAD_TBI LPFLAD_TBI LPFLAD_TBI DIPFLAD_TBI Direct contr Direct contr	A S H F D S B	DF4 i535 rog IPN PG4 fyri evi PI oar	4002 sitC ramming I7 A controls ad7 ce Info d controls	AFE		BIAS	LDO	XBUF Bypa Dypa Tx BB lo Enable T Fronten Refere IAMP n IAMP c	CLKG ss LPF I ss LPFS opback x IQ an d gain nce bia nain bia ascade	EN adde 5 filt alog < cur as cur as cur	SX er of er c inp ren rren siste

Figure 31 LimeSuiteGUI module menu to select FFTviewer

FFTviewer control window will appear. Before start capturing data, set the **Data reading** type to "Packets MIMO", Display channel and press **Start**, as shown in *Figure* 32 and Figure 33.

										FFT vi	ewer								
1500		I	Q s	sam	pl	es		2000	Q.		I	ver	sus	Q		FFT parameters Nyquist freq (MHz): 5	.000000		
1000								1000								Samples count 1 Data reading	6384	D/-	
588								506	-							Packets MIMO V	x rate: 0 M x rate: 0 M	B/s B/s	
0								- 6				+				Use Window function:	(
-588								-506	•							Rectangular			~
1888								-1000	-							Capture to file	1000		
1588								-1506								Samples to capture: Graphs	10384		
-10	100 200 Ampli	300 40 tude	₀ 50 :(d	8 688 BFS	788	800	900 10	F	2000 FT	-1000		8	1	888	200	Freeze time Freeze constellation Freeze FFT Display channel: A FFT averaging: 50			
-38																Buffers status Rxc			
-48																Txc			
-50																weasurement	Ch 1	CI	h 2
																Center offset (MHz):	0	0	
-00																Pandwidth (MUa)	4	1.4	
-78																bandwiden (iviniz).	·		
-78 -88																Power(dbFS): dBc	777 777	777	

	-	×
FFT parameters		
Nyquist freq (MHz):	5.000000	
Samples count	16384	•
Data reading		
Packets MIMO 🔍	Rx rate: 0 MB/s	
Packets SISO	Tx rate: 0 MB/s	
Packets MIMO	тх	
-Window function:		
Rectangular		~

Figure 32 FFTviewer Controls

Figure 33 Setting data type to Packets MIMO

At this point, the FFTviewer start capturing data. Connect the generator to selected LimeSDR receiver path. In the *Figure 34* showed the FFTviewer data capture with 1 MHz CW signal offset from LO.

Figure 34 FFTviewer window in operation

3.10 Manual Calibration of RX Path

Rx DC offset and Rx Unwanted SSB calibration routines have to be executed to calibrate receiver path. The Rx DC offset calibration split in two parts; Analog DC Offset calibration and digital DC offset removal procedure.

To execute Analog DC Offset calibration, select the **RFE** tab in the main GUI window. Make sure that you have selected channel A. In the **DC** box, change **Mixer LO signal** to **0.621** V and look for the best Offset I/Q values to reach minimum level of DC Offset. See *Figure 35* below.

Figure 35 RX DC offset manual calibration

For residual DC offset calibration you need to enable the **DC corrector** in **RxTSP** tab. See Figure 36. It should be enabled (check box un-checked) by default.

9		Lime S	uite GUI – 🗖
ile Options Modules <u>H</u>	elp		
New Open	Save O A C	CHANNEL O B CHANNEL Enable MIMO	p>GUI GUI>Chip Reset Temperature: ????? Read Temp Cal. Int a
Calibrations RFE RBB	TRF TBB AFE	BIAS LDO XBUF CLKGEN SXR	SXT LimeLight & PAD TxTSP RxTSP CDS BIST TRX Gain MCU R3 Controls
Crable RxTSP Bypass DC corrector DC tracking loop DC tracking loop Gain corrector Orac definition Order Order	NCO FCW(MHz) 0.321000 0.000000 0.000000 0.000000 0.000000 0.000000	PHO(deg) RefClk(MHz): 20.000 0.000 Upload NCO 0.000 Wode 0.000 ● FCW PHO 0.000 ■ Signal sources from TSG 0.000 ■ Signal sources from TSG 0.000 ■ Signal sources from TSG 0.000 ■ Signal source from TSGFC 0.000 ■ ADC 0.000 ■ Test signal 0.000 ■ Signal Source from TSGFC 0.000 ■ Signal Source from TSGFC	DC_REG ffff CMIX Decimation Load to DC I Upconvert HBD ratio: 2^1 Load to DC Q Gain: 0 dB Delay line: No delay GFIR1 O Clk ratio: 0 Clk ratio: 0 Clk ratio: 0 Clk ratio: 0 Clk ratio: 0 Coefficients Coefficients Coefficients Coefficients Phase Corr 0 Cain Corrector I: > 2047 I: > > > AGC Mode: AGC
	0.000000	0.000	Output level: < > 0 v
0:38:40] INFO: Estimated refe 0:38:40] INFO: Selected refere 0:38:40] INFO: Connected Co	rence clock 30.7195 MHz nce clock 30.720 MHz ntrol port: LimeSDR-USB F	W:3 HW:4 Protocol:1 GW:2 GW_rev:6 Ref Clk: 30.72	MHz Cli

Figure 36 Enable DC corrector in RxTSP

The unwanted SSB can be seen on FFTviewer window by applying signal to one of the transceiver inputs. See *Figure* 37.

Figure 37 Receiver spectrum with un-calibrated IQ imbalance

To calibrate RX IQ imbalance, go to **RxTSP** tab on *LimeSuiteGUI* GUI. On **IQ Correction** box adjust **Gain ch. I** or **Gain ch. Q** followed by **Phase correction** to reduce the Unwanted SSB. See Figure 38.

🕒 Lime Suite GUI – 🗆 🔀												- 🗆 🗙									
Eile Options Modules	lelp																				
New Open		Save	● A Cł	HANNEL O B CHANNEL En			Enable M	nable MIMO		UI G	GUI>Chip		Reset		Temperature:			e: ????? Read Temp		d Temp	Cal. Int ADC
Calibrations RFE RBB	TRF	TBB	AFE	BIAS	LDO	XBUF	CLKGEN	SXR	SXT	LimeL	ight &	PAD	TxTSP	RxTS	P CDS	BIST	TRX	Gain I	NCU	R3 Contr	ols
Enable RxTSP		ICO							DC_F	EG: ffff	1	CMIX	(_	Decimatio	on					
Bypass	_	FCW(I	MHz)	PHO(de	g) RefC	lk(MHz):	20.000		Lo	ad to DC	1	Upco	nvert	~	HBD ratio	e	2^1	~			
DC corrector	C	0.321000		0.000		Up	load NCO		Lo	ad to DC	0	Gain:	0 dB	~							
DC tracking loop	0.642000		0.000	M	ode					~				Delay line:	1	No delay	~				
Phase corrector	C	0.000000		0.000	۲	FCW O	РНО		G	IR1		G	FIR2		GFIR3						
	C	0.000000		0.000	DLLC	(dee)	000		Lei	ngth: 0) ~	Le	ength:	0 、	Lengt	h: 0	~				
GFIR1 0.000000			0.000	0.000 PHO(deg) 0.000					ratio: 0	0 🔹 (CI	lk ratio: 0	0	Clk rat	io: 0						
♥ GFIR2 ♥ GFIR3 0.000000 0.000					Bits to dither: 1 v				×		Coefficie	1	Coeffic	cients	Co	efficien	ts				
BIST	0	0.000000		0.000	TS	G	10		05									_			
BISTI: ???				0.000		Ph	ise Corr														
BSTATE_I: ???			0.000	T	SGFCW	TSG	TSGMODE		ha(Dee)	0					-						
BSTATE_Q: ???	0	0.000000		0.000	۲	TSP clk/8	○ NCO	со	All	Alpha(beg). V											
Start BIST Read		0.000000		0.000	C	TSP clk/4	• D	DC source	e lo	5 2047											
RSSI		0.000000		0.000	In	put sourc	e TSG	FC	0:	0. 4											
ADCI: ???		0.000000		0.000	۲	ADC	•-6	•6dB	<u> </u>							-					
ADCQ: ???	C	0.000000		0.000	C	Test sign	al 🔿 Fu	ull scale	AG	с	1.00										
CAPSEL ADC Read		0.000000		0.000					Mo	ie:	AGC	0						~			
		0.000000		0.000					win	dow size:	2.1	0				> 0		Ň			
0.000000 0.000					0.1	p gan. out level								-							
									out	putieven	•					-					
20-38:40) INFO: Estimated reference clock 30.7195 MHz 20-38:40) INFO: Selected reference clock 30.720 MHz 20:38:40) INFO: Selected reference clock 30.720 MHz Show Show											 Clear Show Log ✓ □ Log data 										
	Cont	rol port: Lim	eSDR-USE	B FW:3 HV	V:4 Prote	ocol:1 GW	:2 GW_rev:	6 Ref CI	k: 30.72 M	Hz											

Figure 38 Rx IQ correction block

Calibrated receiver spectrum should look like in the *Figure* 39.

Figure 39 Calibrated Rx Spectrum
3.11 Manual Calibration of TX Path

The LO leakage and IQ imbalance have to be calibrated for the LMS7002M transceiver in order to get optimum performance for Tx EVM measurement. The IQ imbalance calibration is done by generating CW and adjusting IQ phase/gain error for IQ mismatch. Th LO leakage calibration is doem by adjust DC offset registers. The internal test NCO can be enabled for this purpose. To do this, select **TxTSP** tab in *LimeSuiteGUI* and select the **Test Signal** as input for Tx path and **NCO** as **TSGMODE**, as showed in figure below.

۲									Lin	ne Suite G	SUI										- 🗆 🗙
<u>File</u> Options Modules New Open	<u>H</u> elp	p Sa	ve	● A CH	IANNEI	L () В СНА	NNEL [Enable Mi	MO	Chip>G	UI G	UI>C	Chip	Re	set		Tem	perature: ?????	Read	l Temp	Cal. Int ADC
Calibrations RFE RB	B	TRF	TBB	AFE	BIAS	LDO	XBUF	CLKGEN	SXR	SXT	LimeL	.ight &	PAD	TxTSP	RxTSP	CDS	BIST	TRX Gain	VCU	R3 Cont	rols
Calibratoris NJ NJ W Enable TxTSP Bypass DC corrector Gain corrector Phase corrector CMIX ISINC W GFIR1 Ø GFIR3 BIST Start BIST Signature ch. I ????????? Read BIST Read BIST		CO FCV 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	V(MHz) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PHO 0.00000 0.000000	(deg)	RefClk(MH Mode © FCW PHO (deg) Bits to dith- TSG Swap I Signal TSGFCW © TSP cl TSP cl TSP cl DTSP c	z): 20.000 PHO 0.000 er: 1 and Q sources 1 kk/8 kk/4 urce butput ignal	rom TSG TSGMODI © NCO © DC sou TSGFC © -6dB © Full sca	v v le	DC_REG: Load to GFIR1 Length: Clk ratic Coel Phase C C Alpha(D Gain Co I: Q: Q: Q: Q: C	ector	CMU Upc Gain:	GFIR2 Coe	: : : : : 0 or 0 0 0 0 0 0 0 0 0 0 0 0 0	v v C C C C C C C C C C C C C C C C C C	-62 -778 -62 -43 31	0 v 0 v 0 v 0 v v 0 v v v v v				
[20:38:40] INFO: Estimated [20:38:40] INFO: Selected re [20:38:40] INFO: Connected	referen ferend I Cont	nce cloc ce clock rrol port: Control p	k 30.7195 30.720 M LimeSDR	MHz Hz -USB FW	3 HW:4 FW:3 F	l Protocol: 1 IW:4 Proto	GW:2 G	W_rev:6 Ref :2 GW_rev:6	Clk: 30	0.72 MHz lk: 30.72 MH	Ηz										 Clear Show Log Log data

Figure 40 Enable the test NCO

<u>NOTE</u>: Before configuring **TxTSP** tab, select the **A/RXT** channel in top right of the GUI.

On the transmitter output you should see the wanted CW with 3.8MHz offset from LO, unwanted SSB on the other side of spectrum and LO leakage. See *Figure* 41.

Figure 41 Not calibrated Tx Output

To do the LO leakage calibration, select **TxTSP** tab in the LimeSuiteGUI GUI and adjust the **DC Corrector** settings (see Figure 42) for channel I and Q separately to get minimum LO leakage.

8								Lin	ne Suite G	UI										- 🗆 🗙
File Options Modules New Open	<u>H</u> elp	Save	● A Cł	IANNE	L 🔿 B CHA	ANNEL [Enable MI	мо	Chip>Gl	л с	GUI>	Chip	Re	set		Tem	perature: ?????	Rea	d Temp	Cal. Int ADC
Calibrations RFE RBI	B TRF	TBB	AFE	BIAS	LDO	XBUF	CLKGEN	SXR	SXT	Lime	Light	BL PAD	TxTSP	RxTSP	CDS	BIST	TRX Gain	ИСИ	R3 Cont	rols
Bypass DC corrector	 0.00 	FCW(MHz) 0000	PHO 0.000	(deg))	RefClk(MH	z): 20.000 Upload) NCO		Load to	DCI	Up Gair	convert	t }	v	HBI 2^1	ratio:				
Gain corrector Phase corrector CMIX ISINC	0.00	0000	0.000)	Mode FCW) рно			- GFIR1	0	-	GFIR2 Length	: 0	G ✓ Le	FIR3	0 🗸				
 ✓ GFIR1 ✓ GFIR2 ✓ GFIR3 	0.00	0000	0.000)	PHO (deg) Bits to dith	0.000 er: 1		~	Clk ratio Coef	: 0 ficients	•	Clk rati	o: 0 efficients	¢ CI	k ratio: Coeffic	0 🔹				
BIST Start BIST State ? Size ?	0.00	0000	0.000	,))	TSG Swap I signal	and Q sources f	rom TSG		Phase Co «	orr				>	-62	•				
Signature ch. Q ????????? Read BIST	0.00	0000 0000	0.000)	TSGFCW TSP cl TSP cl TSP cl	/ k/8 k/4	TSGMODE NCO DC source	rce	Alpha(D Gain Cor	eg): 0 rector					1770	•				
	0.00	0000	0.000)		urce	TSGFC		Q: <	ector				>	1968	• •	1			
	0.00	0000	0.000)	Test s	ignal	O Full sca	le	l: ∢ Q: ∢		1			>	-43 31	▲ ▼ ▲ ▼				
	0.00	0000	0.000)													1			
[20:38:40] INFO: Estimated r [20:38:40] INFO: Selected re [20:38:40] INFO: Connected	eference c erence clo Control p	lock 30.719 ock 30.720 N ort: LimeSD	5 MHz 1Hz R-USB FW	:3 HW:4	4 Protocol:1	GW:2 G	W_rev:6 Ref	Clk: 3	0.72 MHz											 Clear Show Log Log data
	Contr	ol port: Lin	eSDR-USE	FW:3 F	HW:4 Proto	col:1 GW	:2 GW_rev:6	Ref C	lk: 30.72 MH	lz										

Figure 42 DC offset block control

To calibrate Unwanted SSB, use the **IQ Corrector** controls in the **TxTSP** tab. Change **I ch. gain** or **Q ch. gain** followed by **Phase correction** to reduce the Unwanted SSB as shown in Figure 43.

File Options Modules	<u>H</u> elp																			
New Open	Si	ive	● A CH	ANNEL	О В СНА	NNEL [Enable M	IMO	Chip>G	UI GI	UI>C	Chip	Re	set		Temp	perature: ?????	Read	d Temp	Cal. Int ADC
Calibrations RFE RBE Calibrations RFE RBE Exactly corrector Cain corrector CAUX SINC Gain corrector CAUX SINC GFIR1 GFIR2 GFIR3 BIST State ? Signature ch. I ?????????? Read BIST Read BIST	TRF NCO FCI 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000000 0.00000000000000000000000000000000000	TBB MV(MHz) 00	AFE PHO(0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BIAS deg) F [[F E E E E E E E E E E E E E E E E	LDO RefClk(MH: Mode © FCW (PHO (deg) Bits to dither TSG Signal : TSGFCW © TSP cl TSP cl Input soo LML o © LML o	XBUF Z2; 20.000 Upload PHO 0.000 0.000 c x/8 k/8 k/4 urce utput ignal	CLKGEN NCO TSGMODI O NCO O DC sou TSGFC O Full sca	SXR SXR	SXT DC_REG: Load to GFIR1 Length: Clk ratic Coef Phase C 4 Alpha(D Gain Co I: < Q: < DC Corr I: < Q: <	LimeLi ffff DCI DCQ 20 20 20 20 20 20 20 20 20 20	ight & CMI Upc Gain: ↓ C	IPAD 3 X convert 0 dB GFIR2 - ength: Clk ratic Coef	TxTSP	RxTSP V G G Le CI CI S S S S	CDS Inter HBJ 2/1 2/1 Coeffic Coeffic 1778 1968 -43 31	0 v 0 v 0 v	TRX Gain 1	MCU	R3 Cont	ols
20:38:40] INFO: Estimated r 20:38:40] INFO: Selected ref 20:38:40] INFO: Connected	eference clock control port	k 30.7195 30.720 Mł LimeSDR-	0.000 MHz Hz -USB FW:	3 HW:4	Protocol:1	GW:2 G1	W_rev:6 Ref	Clk: 30).72 MHz											Clear Show Lo

Figure 43 IQ Corrector block control

Calibrated Transceiver TX output should look like in the Figure 44.

Figure 44 Calibrated Tx output

Once TX is calibrated the settings can be saved and can be recalled after chip power cycle. After calibration is complete and configure Tx path to accept data from Stream board; go to **TxTSP** and select **LML output** under Tx **Input Source** has to be selected to in TxTSP tab. See *Figure* 40.

<u>NOTE</u>: The Tx IQ and LO leakage calibration procedure can be done using auto calibration routines. The routines are accessed from **Calibration** tab in the GUI.

3.12 Clock Configuration

Onboard clock sources can be configured by LimeSuiteGUI. More information about clock distribution is detailed in chapter "2.2.8 Clock Distribution".

3.12.1 VCTCXO Tuning

VCTCXO can be tuned by onboard phase detector (IC23, ADF4002) or by DAC (IC22). The onboard phase detector is used to synchronize onboard VCTCXO with external equipment (via J19 U.FL connector) to calibrate frequency error. At the same time only phase detector or DAC can control VCTCXO. DAC and phase detector is controlled by FX3 (USB) and selection between them is done automatically. When board is powered, by default VCTCXO is controlled by DAC.

FPGA2 LED indicates DAC or phase detector controls VCTCXO and phase detector lock state.

3.12.2 Tuning VCTCXO Using Frequency Synthesizer (ADF4002)

VCTCXO can be tuned by onboard phase detector (IC23, ADF4002) or by DAC (IC22). If phase detector is configured from *LimeSuiteGUI* software, then DAC is disabled automatically and VCTCXO tuning voltage is supplied from phase detector. When phase detector controls VCTCXO, FPGA2 LED indicates its lock state: red – not locked, green – locked.

The phase detector is used to synchronize onboard VCTCXO with external equipment (via J19 U.FL connector) to calibrate frequency error and can be configured using *LimeSuiteGUI* software. Because VCTCXO also can be tuned by DAC, in this case DAC is disabled. Go to **Modules** form top menu and select **ADF4002** form the drop down menu, as shown in *Figure* 45.

3		
<u>F</u> ile Options	Modules <u>H</u> elp	
New	FFTviewer	
	ADF4002	-
Calibrations R	Si5351C	AF
 Enable TxTS 	Programming	
Bypass	HPM7	
DC correcto	FPGA controls	
Phase correct	Myriad7	
	Device Info	
GFIR1	SPI	
GFIR2	Board controls	
GFIR3	0.000000	-
BIST		

Figure 45 LimeSuiteGUI module menu to select ADF4002 configuration tool

New control window should appear, as shown in the Figure 46.

■ A	DF4002	- 🗆 🗙
ADF4002 Reference Counter Latch Lock Detect Precision: Anti-Backlash: Reference Counter: Three Cycles v 2.9ns v 125 Function Latch Current Setting 1: Timer Counter: Muxout Control 7 v 3 v Digital Lock Detect v Current Setting 2: Fastlock: 7 v Disabled v Negative @ Positive	N Counter Latch CP Gain: N Counter: 0 ✓ 384 ← PD1 Counter Reset 0 0 Normal 1 R N Reset PD2 CP State 0 Normal	Calculation of R N Fref, MHz Fvco, MHz: 30.720000 Fvco (MHz) = Fvco LCM = Fcomp Calculate R, N & Upload Upload
Initialization Latch Current Setting 1: Timer Counter: Muxout Control 7 3 Digital Lock Detect v Current Setting 2: Fastlock: PD Polarity 7 Disabled Negative Image: Positive Positive	PD1 Counter Reset Image: Orgen constraints Image: Orgen constraints Image: Orgen constraints	

Figure 46 ADF4002 configuration window

Field **Fref** value indicates the frequency to that VCTCXO will be synchronized and must be fed to REF_CLK (J14) connector. Usually this value is 10 MHz. When all parameters are entered in this window, press button **Calculate R**, N & Upload and frequency synthesizer will be configured.

3.12.3 Tuning VCTCXO using DAC

VCTCXO can be tuned by onboard frequency synthesizer (IC16, ADF4002) or by DAC (IC15). If DAC is configured from *LimeSuiteGUI* software, then frequency synthesizer is shut down and VCTCXO tuning voltage is supplied from DAC. When DAC controls VCTCXO, FPGA2 LED is off.

DAC can be configured using *LimeSuiteGUI* software. Go to **Modules** form top menu and select **Board controls** form the drop down menu, as shown in *Figure* 47.

٩		
<u>F</u> ile Options	Modules <u>H</u> elp	
New	FFTviewer	
	ADF4002	
Calibrations F	Si5351C	
Enable TxTS	Programming	
Bypass	HPM7	
DC correcto	FPGA controls	_
Phase correct	Myriad7	
	Device Info	_
GFIR1	SPI	
GFIR2	Board controls	
GFIR3	0.000000	-
BIST		_

Figure 47 LimeSuiteGUI module menu to select DAC configuration tool

New window will appear, as shown in the Figure 48.

Board rel	ated controls	×
Read all Write all Labels:	LimeSDR-USB 🗸	
Read	Write	_
Ch. Name Value Units	Ch. Name Value	Units
0 DAC 125 1 Board Temperature 60 C	0 DAC 125	
External loopback controls	GPIO Control GPIO 7 6 5 4 3 2 1 0 DIR OUT IN 0 0 0 0 0 0 0 0 0 0 0	

Figure 48 Board related controls

Current DAC value can be read by pressing button **Read all**. DAC value will be displayed in group box **Read** with channel 0. In this case DAC value is 125.

Enter new DAC value in group box Write channel 0. After this press **Write all** and DAC value will be updated.

3.12.4 VCTCXO Calibration Procedure

Board has VCTCXO DAC factory calibration value that is stored in non-volatile memory. This value is loaded to DAC output after each board power up or reset. This value can be changed manually or by automatic calibration procedure. To perform automatic calibration procedure,

connect external reference clock to connector J19, start it from *LimeSuiteGUI* software and enter Fref frequency (default Fref value 10MHz).

Calibration procedure steps:

- 1. Lock phase detector (ADF4002) to external Fref clock as described in section **Error! Reference source not found.** If phase detector cannot lock to reference clock, calibration procedure cannot continue and will be aborted.
- 2. Measure TCVCXO frequency and store for future comparison.
- 3. Start changing TCXO DAC value and detect when VCTCXO frequency is as close as possible to the value measured in step 2.
- 4. Store new VCTCXO value in non-volatile memory.

3.12.5 Programmable Clock Generator (Si5351C) Configuration

Programmable clock generator has eight channels and each can be configured individually using *"LimeSuiteGUI"* software. Go to **Modules** form top menu and select **Si5351C** form the drop down menu, as shown in *Figure 49*.

Figure 49 LimeSuiteGUI module menu to select Si5351C configuration tool

New window will appear, as shown in the Figure 50.

•			Si5351	IC			- 🗆		x
Si5351C Upload reg Reset regis	ister map from fi ter map to defau	CLKIN Frequency (MH PLL src	Hz) 30.72 XTAL freq 25 MHz	○ 27 MHz	SYS_INIT: LOL_B: ? LOL_A: ? LOS: ?	? SN LOL_B_STK LOL_A_STK LOS_STKY: Read Status	YS_INIT_STKY: Y: ? Y: ? ? Clear	?	
Pin Name	Enable channel	Output frequency (MHz)	Invert output						
CLK0	<	27.0							
CLK1	<	27.0							
CLK2	<	27.0							
CLK3	✓	27.0		Configure	Clocks				
CLK4	<	27.0							
CLK5	✓	27.0							
CLK6	✓	27.0							
CLK7	◄	27.0							

Figure 50 Si5351C configuration window

3.13 Reading Board Temperature

LimeSDR-USB has integrated temperature sensor. The sensor measured temperature may be displayed in software. Go to **Modules** form top menu and select **Board controls** form the drop down menu, as shown in *Figure 51*.

۲		
File Options	Modules	Help
New	FFT	viewer 🛛 🔍 🔍
	ADF	4002
Calibrations R	Si53	51C AF
 Enable TxTS 	Prog	gramming
Bypass	HPN	47
DC correcto	FPG	A controls
Phase correct	Myr	iad7 🔤
	Devi	ce Info
GFIR1	SPI	
GFIR2	Boar	rd controls
		0.000000
BIST		0.000000

Figure 51 LimeSuiteGUI module menu to select temperature tool

New window appears, as shown in the Figure 52.

Board rela	ated controls
Read all Write all Labels:	LimeSDR-USB 🗸
Read	Write
Ch. Name Value Units	Ch. Name Value Units
0 DAC 125 1 Board Temperature 60 C	0 DAC 125
External loopback controls RF loopback ch.A RF loopback ch.B Ch.A shunt Ch.B shunt Ch.A attenuator Ch.B attenuator	GPIO Control GPIO 7 6 5 4 3 2 1 0 DIR OUT IN 0 0 0 0 0 0 0 0 0

Figure 52 Board related controls, temperature section

Current temperature sensor value can be read by pressing button **Read all**. Temperature value will be displayed in group box **Read** with channel 1. In this case temperature is 60 °C.

4. Drivers Installation

The communication between LimeSDR-QPCIe board and PC can done via the USB3 interface. Initially, LimeSDR-QPCIe board comes with preprogramed FX3 firmware and ready to use. If FX3 firmware needs to be updated, follow chapter 5.1.

This chapter guides through the USB3 driver installation for the LimeSDR- QPCIe board under Windows and Linux operating systems.

4.1 Windows USB Driver Installation Procedure

Download the latest drivers [here], select *Clone or Download and then Download ZIP* as shown in Figure 53. The name of the archive will be *Windows-drivers-master.zip* by default. Extract the archive.

	Find	l file	Clone or down	load 🔻
	Clone with HTTPS ③	l usin	a the web URL.	
ded.	https://github.com/myria	adrf/W	/indows-driver	Ê
	Open in Desktop		Download ZIP	,

Figure 53 Driver download from GiHub

First time LimeSDR- QPCIe board is connected to the PC, follow the installation procedure below.

1. Press Start Menu and right click on Computer, select Properties and Device Manager.

Figure 54 Open computer properties

Figure 55 Open device manager

2. When LimeSDR- QPCIe board is plugged in, in **Device Manager** it appears as **LimeSDR-QPCIe** under **Other devices**. Right click on the **LimeSDR- QPCIe** and select **Update Driver Software**.

Figure 56 Update driver software

3. Select driver installation manually and choose driver from downloaded package (Windows-drivers-master\WinDriver_LimeSDR- QPCIe).

Choose the driver which is suitable for the operating system running:

- Windows XP (wxp)
- Windows Vista (vista)
- Windows 7 (win7)
- Windows 8 (win8)
- Windows 8.1 (win81)

OS version:

- x86 (32bit-i386)
- x64 (64bit-amd64)

	Country and the line of the second state of th	
ľ	Search automatically for updated driver software Windows will search your computer and the Internet for the latest driver software for your device, unless you've disabled this feature in your device installation settings.	
-	 B<u>r</u>owse my computer for driver software Locate and install driver software manually. 	

Figure 57 Browse for driver software

		×
←	Update Driver Software - LimeSDR-USB	
	Browse for driver software on your computer	
	Search for driver software in this location:	
	vnloads\Windows-drivers-master\WinDriver_LimeSDR-USB\Win10	
l		
	\rightarrow Let me pick from a list of device drivers on my computer	
	This list will show installed driver software compatible with the device, and all driver software in the same category as the device.	
	Next Canc	-
	<u>In</u> ext Carle	

Figure 58 Select driver location

4. After successful installation "*Myriad-RF LimeSDR-* QPCIe" will appear under USB controller devices.

Figure 59 Successful LimeSDR- QPCIe installation

Figure 60 Device manager window after installation

4.2 Linux USB Drivers

No need to install USB3 drivers for Linux operating system, while it comes with libusb library.

4.3 Windows PCIe driver installation procedure

Download the latest drivers [here], select xillybus-windriver-1.2.0.0.zip package and unzip. First time LimeSDR-QPCIe board is connected to the PC, follow the installation procedure below.

5. Press Start Menu and right click on Computer, select Properties and Device Manager.

Figure 61 Open computer properties

Figure 62 Open device manager

6. When LimeSDR-QPCIe board is plugged in, in **Device Manager** it appears as **PCI Device** under **Other devices**. Right click on the **PCI device** and select **Update Driver Software** Figure 63.

Network adapters Other devices		
PCI Device	Update Driver Software	
Processors Smart card rea	Disable Uninstall	
⊳ 🛒 Sound, video a ⊳ 🖳 System device	Scan for hardware changes	
 Universal Seria WSD Print Proviner 	Properties	

Figure 63 Update driver software

7. Select Browse my computer for driver software (Figure 64) and in browse window (Figure 65) choose driver from downloaded package (extracted files from xillybus-windriver-1.2.0.0.zip).

Figure 64 Browse for driver software

G I Update Driver Software - PCI Device	X
Browse for driver software on your computer	
Search for driver software in this location:	
C:\Downloads\xillybus-windriver-1.2.0.0	
☑ Include subfolders	
→ Let me pick from a list of device drivers on my computer This list will show installed driver software compatible with the device, and all driver software in the same category as the device.	
<u>N</u> ext Ca	ancel

Figure 65 Select driver location

8. After selecting driver files and clicking Next button Windows security warning might appear, check Always trust software from "Xillybus Ltd" and click Install.

Figure 66 Windows security warning

9. After successful installation (Figure 67) *"Xillybus driver for generic FPGA interface"* will appear under Xillybus device (Figure 68).

💽 Xillybus driver for generic FPGA interface

Figure 68 Device manager window after installation

4.4 Linux PCIe drivers

No need to install PCIe drivers for Linux operating system.

5. LimeSDR-QPCIe Board Programming

This section describes how to program USB3 Microcontroler (FX3) and FPGA. FX3 can be programmed with Cypress tools (see **5.2 Updating USB3 Microcontroller Firmware in Bootloader Mode**) or LimeSuiteGUI (see **5.1 Updating FX3 Firmware Using LimeSuiteGUI**). This section describes also how to obtain FPGA programming file and program FPGA using LimeSuiteGUI (see **5.4.1 Uploading FPGA Gateware to FLASH Memory using LimeSuiteGUI**) or JTAG cable (see **5.4.2 Uploading FPGA gateware to FLASH memory using JTAG Cable**).

5.1 Updating FX3 Firmware Using LimeSuiteGUI

The firmware of FX3 MCU contains a functionality which enables to program FLASH memory FX3 MCU boots up from. In this case FX3 USB controller firmware can be updated using *"LimeSuiteGUI"* software, when FX3 MCU can boot from FLASH memory.

To call FPGA programing function, launch LimeSuiteGUI and connect to the board (see "3.1 Launching LimeSuiteGUI and Connecting to the LimeSDR-USB Board" section for more information). Then go to **Modules** from main menu and select **Programing** form the drop down menu, as shown in Figure 69.

File Options	Modules Help	
New	FFTviewer	0 A O
Calibrations	ADF4002	
Calibrations P	Si5351C	AFE
Gain Correct	Programing	
F d	RF-ESpark	. 0
	HPM7	1 0
Q: 4	FR	0 4

Figure 69 LimeSuiteGUI module menu to select FX3 programing tool

New window appears, as shown in the Figure 70.

Programing		x
Open	File: ?	
Program		
Device:	Programming mode:	
Altera FPGA	▼ Bitstream to FPGA ▼	

Figure 70 Programing tool interface

Change device to "FX3" and press "Open" and select firmware image file.

Programing	
Open	File: ?
Program	
Device:	Programming mode:
FX3	✓ Firmware to Flash ▼

Figure 71 FX3 programing options

Initiate FLASH memory programing by clicking **Program**.

The new message will come up when programing is finished, as shown in Figure 72.

Figure 72 Successfully FX3 programing message

After successful firmware update, connect to the LimeSDR-USB board again as described in section 3.1.

5.2 Updating USB3 Microcontroller Firmware in Bootloader Mode

Cypress FX3 USB microcontroller has an integrated boot loader, which starts automatically after power-up or reset and when no valid firmware is present in the FLASH memory.

For USB microcontroller firmware upgrade, please use the "*CyControl.exe*" application from *cy_ssusbsuite_v1.3.3.zip* package which may be downloaded [here].

If FLASH memory is empty or connector J17 (on LimeSDR-USB board) is open, USB3 microcontroller boots-up into bootloader mode. Cypress drivers from *cy_ssubsuite_v1.3.3.zip* package must be installed first. Run the "USB Control Center" application and select **Cypress** USB BootLoader line as shown in *Figure 73*.

Figure 73 Default FX3 firmware, supplied by FX3 internal logic

After entering into boot loader mode, there are two ways of uploading the firmware to USB3 microcontroller:

- Program external SPI FLASH memory connected to USB3 controller. Follow procedure described in chapter "5.2.1 Uploading Firmware to SPI FLASH". The USB3 microcontroller will boot from FLASH memory after every power-on.
- Program internal RAM memory. Follow procedure described in chapter "5.2.2 Uploading *Firmware to the FX3 RAM*". The memory will be cleared after first power cycle hence this step should be used for test purposes only.

5.2.1 Uploading Firmware to SPI FLASH Memory

Short the jumper J17 and connect LimeSDR-USB board to the PC. Start "*CyControl.exe*" application and select **Cypress USB BootLoader** as shown in *Figure 73*. Choose menu command **Program** \rightarrow **FX3** \rightarrow **SPI FLASH**. In the status bar you will see **Waiting for Cypress Boot Programmer device to enumerate....** and after some time window will appear. Select firmware image file (file extension is "*.img") and press **Open**. Status bar of the **USB Control Center** application will indicate **Programming of SPI FLASH** in **Progress...**. This message will change to the **Programming succeeded** after FLASH programming is done.

If you expand **Cypress USB StreamerExample** line in **USB Control Center** application now, you will see different USB configuration as shown in *Figure 74*.

Figure 74 FX3 after custom firmware is downloaded

<u>NOTE</u>: USB3 microcontroller will boot firmware uploaded to FLASH each time after power-on if jumper J17 is shorted.

5.2.2 Uploading Firmware to the FX3 RAM

Start "*CyControl.exe*" application and select **Cypress USB BootLoader** as shown in *Figure 73*. Choose menu command **Program** \rightarrow **FX3** \rightarrow **RAM**. In the new pop-up window, select firmware image file (file extension is "*.img") and press **Open**. Status bar of the **USB Control Center** application will indicate **Programming RAM**. This message will change to the **Programming succeeded** after programming is done.

Note please that this may be used for test purposes only, while firmware will disappear from the RAM after LimeSDR-USB board power cycle.

5.3 Obtaining FPGA programming files

FPGA gateware programming file can be obtained by compiling provided LimeSDR-QPCIE_lms7_trx project with Intel Quartus Prime software. Software version used with this guide: Quartus prime 15.1.2 Build 193 02/01/2016 SJ Lite Edition. Quartus Prime Lite Edition software can be downloaded from [here].

5.3.1 PCIe core generation

PCIe Xillybus core has to be generated and downloaded in order to compile LimeSDR-QPCIE_lms7_trx FPGA project. This chapter describes steps and parameters required to generate Xillybus PCIe core.

5.3.1.1 Signing UP

Xillybus requires to fill up free registration form in order to download generated core. Go to [link], fill required fields (Figure 75) and confirm registration via received eMail.

XILLYBUS. IP cores and design se	ervices
HOME DOWNLOAD DOCUMENTATION LK	CENSING IP CORE FACTORY CONTACT
IP Core Factory – sign up!	
Hello, Anonymous User	Email address: Password: Loginl Remember me Forgot your password? Sign up!
	My saved IP cores
Email address: user@mail.com Password:	 Your email address is your user name at this site Gmail and other free mail addresses are OK This email address is authenticated on the next step Please use an address you really check: Only very few messages, related directly to creating custom IP cores, will be sent there.
Type the characters you see in the picture below.	
Letters are not case-sensitive	
Sign up!	
© Copyrig	ht 2010-2016 Xillybus Ltd. Email for inquiries: general@xillybus.com

Figure 75 Registration form

5.3.1.2 Creating new IP core

After successful registration, go to IP core Factory page [link] fill parameters as shown in Figure 76 and click *Create*!.

XILLYBUS. IP cores and design	n services	Announcing Xillybus for USB Announcing Xillybus for High Performance Computing
HOME DOWNLOAD DOCUMENTATION	LICENSING IP CORE FACTORY	CONTACT
IP Core Factory – create r	new IP core	
Hello, Anonymous User	Email address:	Password: Login! Remember me Forgot your password? Sign up!
		My saved IP cores
IP core's name (for reference in this site only): myipcore	
Target device family: Altera Cyclone V	v (?)	Operating system: Linux and Windows 🔻 🍞
Initial template: Demo bundle setting 🔻 🤇	3	
		Createl
© Cor	pyright 2010-2017 Xillybus Ltd. Email for ir	Iquiries: general@xillybus.com

Figure 76 Create new IP core dialog

5.3.1.3 Setting core parameters

After new core creation in next dialog click *Edit* to change settings for each device files (Figure 77).

HOME DOWNLOAD DOCUMENTATI	on LICENSING	IP CORE FACTOR	Annou RY CONTAG	ncing Xillybus for High Performance Computing
Hello, Anonymous User		Email addre	ss:	Password: Login!
				My saved IP cores
Core summary				
Name Status		Target device	family	Operating system
myipcore (edit attributes replicate	delete 🌛 ge	nerate core)		
Open for changes 👔		Altera Cyclone \	/	Linux and Windows
				🕀 Add a new core
Device files				
Name Direction	Data width	Expected BW	Autoset	Details
xillybus_read_32 edit replicate	delete)			
Upstream (FPGA to host)	32 bits	395 MB/s	Yes	Data acquisition / playback (10 ms)
xillybus_write_32 edit replicate	delete)			
Downstream (host to FPGA)	32 bits	395 MB/s	Yes	Data acquisition / playback (10 ms)
xillybus_read_8 edit replicate	delete)			
Upstream (FPGA to host)	8 bits	1 MB/s	Yes	General purpose
xillybus_write_8 edit replicate	delete)			
Downstream (host to FPGA)	8 bits	1 MB/s	Yes	General purpose
xillybus_mem_8 edit replicate	delete)			
Upstream (FPGA to host)	8 bits	102.400 kB/s	Yes	Address/data interface (5 address bits)
Downstream (host to FPGA)	8 bits	102.400 kB/s	Yes	Address/data interface (5 address bits)
				+ Add a new device file
	© Copyright 2010-2	2017 Xillybus Ltd. Email f	or inquiries: gene	ral@xillybus.com

Figure 77 File editing

In *Edit* dialog (Figure 78) fill following parameters for corresponding file and click *Update!*. To enter all parameters *Autoset internals* has to be unchecked:

- stream0_read_32

For xillybus_read_32:

- Device file's name
- Direction
- Upstream (FPGA to host)
- Use Data acquisition / playback
- Data width 32 bits

- 395 Expected bandwidth •
- Autoset internals - unchecked •
- Asynchronous/synchronous - Asynchronous
- Number of buffers - 512
- Size of each buffer - 16 kB •

XILLYBUS. IP cores and design services

Announcing Xillybus for USB Announcing Xillybus for High Performance Computing

HOME	DOWNLOAD	DOCUMENTATION	LICENSING	IP CORE FACTORY	CONTACT		
IP Co	ore Facto	ory					
		<i>,</i>					
Hello, A	Anonymous User			Email address:	🗆 Remember me	Password: Forgot your password?	Login! Sign up!
						My sav	ed IP cores
Device	files's name: xi	llybus_stream0_read_	32				
Directi	ion: Upstream (F	PGA to host) 🔹	?	Use: Data a	cquisition / playback	• ?	
U	pstream (FPGA	to host)					
	Data width: 32 b	its 🔻 💡	Expected band	lwidth: 395 🕜	MBytes/s	🗆 Autoset internals 💡	
	 Asynchronous Synchronous 	Num	per of buffers: 5	12 🔻 🕐	Size of each buffer	: 16 kB 🔻 🕐	
1							Update!
		_@(opyright 2010- <u>2017</u>	Xillybus Ltd. Email <u>for ing</u>	uiries: general@xillybu <u>s.com</u>		

Figure 78 xillybus_read_32 file editing

Edit rest of the files with following parameters:

For xillybus_write_32:

- Device file's name - stream0_write_32
- Direction •

• Use

- Downstream (host to FPGA)
- Data acquisition / playback
- Data width
- 32 bits - 395
- Expected bandwidth • Autoset internals
- unchecked
- Asynchronous/synchronous Asynchronous
- Number of buffers - 512
 - 16 kB
- Size of each buffer
- 8 segments x 512 bytes • DMA acceleration

For xillybus_read_8:

- Device file's name - control0_read_32
- Direction - Upstream (FPGA to host) •

• Use

- General purpose

- control0_write_32

- Downstream (host to FPGA)

- 32 bits

- 1

- Expected bandwidth
- Autoset internals checked

For xillybus_write_8:

Data width

- Device file's name
- Direction

• Data width

• Use

•

- General purpose - 32 bits

- 1

- Expected bandwidth
- Autoset internals checked

For xillybus_mem_8:

- Device file's name
- mem_8
- Direction- BidirectionalUse- Address/data interface (5 address bits)
- Use Upstream (FPGA to host)
 - Data width
 - Expected bandwidth
 - Autoset internals checked
 - Downstream (host to FPGA)
 - Data width
 Expected bandwidth
 0.1
 - Autoset internals
 0.1
 checke
 - set internals checked

Next step is to add more device files, click *Add new device file* Figure 79 and add following device files with following parameters:

- Upstream (FPGA to host)

- Data acquisition / playback

- 8 bits

- 0.1

xillybus_stream1_read_32:

• Autoset internals

• Use

- Device file's name stream1_read_32
- Direction
 - Data acquisition / playback
- Data width
- Expected bandwidth 395
 - unchecked

- 32 bits

- Asynchronous/synchronous Asynchronous
- Number of buffers 512
- Size of each buffer 16 kB

xillybus_ stream1_write_32:

- Device file's name stream1_write_32
- Direction Downstream (host to FPGA)
- Use
- Data width 32 bits

- 395 • Expected bandwidth
- Autoset internals - unchecked •
- Asynchronous/synchronous Asynchronous
- Number of buffers - 512
- Size of each buffer - 16 kB
- DMA acceleration • - 8 segments x 512 bytes

xillybus_stream2_read_32:

Direction

•

•

- Device file's name •
- stream2_read_32

- Asynchronous

- Upstream (FPGA to host)
- Data acquisition / playback Use • - 32 bits • Data width
 - 395
- Expected bandwidth Autoset internals
 - unchecked
- Asynchronous/synchronous •
- Number of buffers - 512
- Size of each buffer - 16 kB •

xillybus_stream2_write_32:

- Device file's name
- Direction
- Use •
- Data width
- Expected bandwidth
- Autoset internals
- Asynchronous/synchronous Asynchronous
- Number of buffers
- Size of each buffer - 16 kB
- DMA acceleration - 8 segments x 512 bytes

- stream2_write_32 - Downstream (host to FPGA)
- Data acquisition / playback
- 32 bits
- 395

- unchecked
 - 512

XILLYBUS.	IP cores and c	lesign servic	es	An	nouncing Xillybus for USB nouncing Xillybus for High Performance Computing
HOME DOWNLO	DAD DOCUMENTAT		IG IP CORE FACT	ORY CON	ТАСТ
IP Core Fa	actory – List	: of device f	iles for IP core	e "myipco	ore"
Hello, Anonymous	User		Email add	ress:	Password: Login! Remember me Forgot your password? Sign up!
					My saved IP cores
Core summar	у				
Name	Status		Target devic	e family	Operating system
myipcore (ed	it attributes replicat	e delete 🕣 ge	enerate core)		
	Open for changes 🧿)	Altera Cyclone	e V	Linux and Windows
					🕀 Add a new core
Device files					
Name	Direction	Data width	Expected BW	Autoset	Details
xillybus_strea	am0_read_32 (edit	replicate delet	e)		
	Upstream (FPGA to host)	32 bits	395 MB/s	No	Asynchronous, 512 x 16 kB = 8 MB Data acquisition / playback
xillybus_strea	am0_write_32(edit	: replicate dele	te)		
	Downstream (host to FPGA)	32 bits	395 MB/s	No	Asynchronous, 512 x 16 kB = 8 MB DMA acceleration: 8 segments x 512 bytes Data acquisition / playback
xillybus_read	8 (edit replicate	delete)			
	Upstream (FPGA to host)	32 bits	1 MB/s	Yes	General purpose
xillybus_write	e_8 (edit replicate	delete)			
	Downstream (host to FPGA)	32 bits	1 MB/s	Yes	General purpose
xillybus_mem	n_8 (edit replicate	delete)			
	Upstream (FPGA to host)	8 bits	102.400 kB/s	Yes	Address/data interface (5 address bits)
	Downstream (host to FPGA)	8 bits	102.400 kB/s	Yes	Address/data interface (5 address bits)
					+ Add a new device file

......

Figure 79 Add new device file

After updating all files click generate core (Figure 80). Check core status and download it when available (Figure 81).

Coro E	actory	h of douised	files for TD rea	. Unaccia -	250
Core ro	actor y – Lis	t of device i	Email add		Die Dasswords I opini
llo, Anonymous	s User		Linan add		Remember me Forgot your password? Sign up
					My saved IP core
re summa	ry				
Name	Status		Target devi	ce family	Operating system
myipcore (e	dit attributes replicat	e delete 🕑 g	enerate core)		
	Open for changes)	Altera Cyclor	ie V	Linux and Windows
					(🛨 Add a new co
vice files					
Name	Direction	Data width	Expected BW	Autoset	Details
xillybus_stre	am0_read_32 (edit	replicate dele	te)		Asymphoneous 512 x 16 kp = 9 Mp
	(FPGA to host)	32 bits	395 MB/s	No	Data acquisition / playback
xillybus_stre	am0_write_32 (edi	t replicate del	ete)		
	Downstream (host to FPGA)	32 bits	395 MB/s	No	Asynchronous, 512 x 16 kB = 8 MB DMA acceleration: 8 segments x 512 bytes Data acquisition / playback
xillybus_rea	d_8 (edit replicate	delete)			
	Upstream (FPGA to host)	32 bits	1 MB/s	Yes	General purpose
xillybus_writ	te_8 (edit replicate	delete)			
	Downstream (host to FPGA)	32 bits	1 MB/s	Yes	General purpose
xillybus_mer	m_8 (edit replicate	delete)			
	Upstream (FPGA to host)	8 bits	102.400 kB/s	Yes	Address/data interface (5 address bits)
	Downstream (host to FPGA)	8 bits	102.400 kB/s	Yes	Address/data interface (5 address bits)
xillybus_stre	am1_read_32 (edit	replicate dele	te)		
	Upstream (FPGA to host)	32 bits	395 MB/s	No	Asynchronous, 512 x 16 kB = 8 MB Data acquisition / playback
xillybus_stre	am1_write_32 (edi	t replicate del	ete)		
	Downstream (host to FPGA)	32 bits	395 MB/s	No	Asynchronous, 512 x 16 kB = 8 MB DMA acceleration: 8 segments x 512 bytes Data acquisition / playback
xillybus_stre	am2_read_32 (edit	replicate dele	te)		
	Upstream (FPGA to host)	32 bits	395 MB/s	No	Asynchronous, 512 x 16 kB = 8 MB Data acquisition / playback
xillybus_stre	am2_write_32 (edi	t replicate del	ete)		
	Downstream	20 L 1	205 MB/-		Asynchronous, 512 x 16 kB = 8 MB

Figure 80 Core generation

HOME	DOWNLOAD	DOCUMENTATION	LICEN SING	IP CORE FACTORY	CONTACT						
ID Co											
IP Co	re Facto) ry — Your sa	ved IP core	es							
Hello,		(manage	e)			Log out					
						My saved IP cores					
Name		Status		Target device	family	Operating system					
myipcore	_demo (5)	Download		Altera Cyclone I	V with 4x lanes	Linux and Windows					
						🕂 Add a new core					
				Vikihara Lida I Franciska inarr							
	© Copyright 2010-2016 Xillybus Ltd. Emtail for inquiries: general@xillybus.com										

XILLYBUS. IP cores and design services

Figure 81 Download status

5.3.2 Adding PCIe core to project

This chapter describes steps to include Xillybus core to Quartus project:

- Extract downloaded .zip file "corebundle-myipcore_demo.zip" (myipcore_demo name that was entered during core generation).
- Place file *xillybus.v* to Quartus project directory limesdr-qpcie_xillybus_core/
- Place file *xillybus_core.qxp* to Quartus project directory limesdr-qpcie_xillybus_core/
- Open Quartus *LimeSDR-QPCIE_lms7_trx* project and select *Project→ Add/Remove Files in Project.* and add files *xillybus.v* and *xillybus_core.qxp* to Quartus project (Figure 82).
- Recompile project *Processing* \rightarrow *Start Compilation*.

·	Settings - LimeSDR-PCIE_Ims7_trx			
Category:				Device
General	Files			
Files				
Libraries	Select the design files you want to include in the project. Click Add All to add all design files in the	e project directory to the project.		
▲ IP Settings				
IP Catalog Search Locations	Eile name:			Add
Design Templates			32	
 Operating Settings and Conditions 			~	Add Ali
Voltage	File Name	Туре	^	Remove
Temperature	Ims_ctr/synthesis/submodules/Ims_ctr_mm_interconnect_0_rsp_demux.sv	SystemVerilog HDL File	_	_
 Compilation Process Settings 	Ims_ctr/synthesis/submodules/Ims_ctr_mm_interconnect_0_router_004.sv	SystemVerilog HDL File		<u>U</u> p
Incremental Compilation	Ims_ctr/synthesis/submodules/Ims_ctr_mm_interconnect_0_router_002.sv	SystemVerilog HDL File		
 EDA Tool Settings 	Ims ctr/synthesis/submodules/Ims ctr mm interconnect 0 router 001.sv	SystemVerilog HDL File		<u>D</u> own
Design Entry/Synthesis	Ims_ctr/synthesis/submodules/Ims_ctr_mm_interconnect_0_router.sy	SystemVerilog HDL File		
Simulation	Ims ctr/synthesis/submodules/Ims ctr mm interconnect 0 cmd mux 002.sv	SystemVerilog HDL File		Properties
Formal Verification	Ims ctr/synthesis/submodules/Ims ctr mm interconnect 0 cmd mux.sv	SystemVerilog HDL File		
Board-Level Compiler Settings VHDL Input	Ims ctr/synthesis/submodules/Ims ctr mm interconnect 0 cmd demux 001.sv	SystemVerilog HDL File		
	Ims_ctr/synthesis/submodules/Ims_ctr_mm_interconnect_0_cmd_demux.sv			
	lms_ctr/synthesis/submodules/lms_ctr_mm_interconnect_0_avalon_st_adapter_error_adapter			
Verilog HDL Input	Ims ctr/synthesis/submodules/Ims ctr mm interconnect 0 avalon st adapter.v	Verilog HDL File		
Default Parameters	Ims_ctr/synthesis/submodules/Ims_ctr_mm_interconnect_0.v	Verilog HDL File		
TimeQuest Timing Analyzer	Ims ctr/synthesis/submodules/Ims ctr Ims ctr gpio.v	Verilog HDL File		
Assembler	lms_ctr/synthesis/submodules/lms_ctr_leds.v	Verilog HDL File		
Design Assistant	lms_ctr/synthesis/submodules/lms_ctr_irq_mapper.sv	SystemVerilog HDL File		
SignalTap II Logic Analyzer	lms_ctr/synthesis/submodules/avfifo.vhd	VHDL File		
Logic Analyzer Interface	lms_ctr/synthesis/submodules/altera_reset_synchronizer.v	Verilog HDL File		
PowerPlay Power Analyzer Settings	Ims_ctr/synthesis/submodules/altera_reset_controller.v	Verilog HDL File		
SSN Analyzer	lms_ctr/synthesis/submodules/altera_merlin_slave_translator.sv	SystemVerilog HDL File		
	lms_ctr/synthesis/submodules/altera_merlin_slave_agent.sv	SystemVerilog HDL File		
	Ims_ctr/synthesis/submodules/altera_merlin_master_translator.sv	SystemVerilog HDL File		
	lms_ctr/synthesis/submodules/altera_merlin_master_agent.sv	SystemVerilog HDL File		
	Ims_ctr/synthesis/submodules/altera_merlin_burst_uncompressor.sv	SystemVerilog HDL File		
	lms_ctr/synthesis/submodules/altera_merlin_arbitrator.sv	SystemVerilog HDL File		
	lms_ctr/synthesis/submodules/altera_avalon_sc_fifo.v	Verilog HDL File		
	lms_ctr/synthesis/lms_ctr.vhd	VHDL File		
	▷ io/fifo 32b/fifo 32b.aip	IP Variation File (.cip)	、 ×	
			/	
	D D U D D U U D D U U U U U U U U U U	OK Caraal	and a	Hale
	W Buy Software	OK Cancel A	pply	Help

Figure 82 Adding files to Quartus project

5.3.3 Programming files

After performing full project compilation in Quartus prime software *Processing* \rightarrow *Start Compilation* in Messages window (see Figure 83) should appear messages stating that programming files are created:

×	All	8	۸	1	\	<filter>> 66 Find Next</filter>			
-	туре	:	ID	Flag	Source	Message			
=	0				0	******			
	> 0				0	Generated programming file: LimeSDR-PCIE_lms7_trx_HW_1.2.jic			
	Ō				0	***************************************			
	0				0	***************************************			
	> 0				0	Generated programming file: LimeSDR-PCIE_lms7_trx_Hw_1.2.rbf			
	0				0	***************************************			1
es									1
sag	<							1	þ.
Mes	Syste	m (6)	Pro	ocessing					
_							0%	00:00:00	

Figure 83 Project compilation message window

Programming files can be found in folder *output_files* from project directory:

*.jic - JTAG Indirect Configuration File can be used to program FPGA gateware to FLASH memory (if valid file is loaded FPGA boots from FLASH when board power is applied automatically).

***.sof** - SRAM Object File can be used to program FPGA (has to be programmed every time after board power is applied)

*.rbf - Raw Binary File can be used to program FPGA gateware into FLASH memory through LimeSuiteGUI (valid gateware has to be already running)

5.4 Uploading FPGA Gateware to FLASH Memory

There are two ways of uploading FPGA gateware to onboard FLASH memory:

- Using LimeSuiteGUI (requires FX3 Firmware to be already uploaded)
- Using JTAG programming cable

5.4.1 Uploading FPGA Gateware to FLASH Memory using LimeSuiteGUI

This section describes how to load custom gateware to LimeSDR-QPCIe board FPGA Flash memory. This step requires that FX3 Firmware has to be already uploaded.

The Altera Cyclone V FPGA which sits on the LimeSDR-QPCIe board can be programmed using *"LimeSuiteGUI"* software. To call FPGA programing function, go to **Modules** from main menu and select **Programing** form the drop down menu, as shown in *Figure* 84.

File Options	Modules Help		
New	FFTviewer	0 A O	
Calibrations F	ADF4002	AFE	
Receiver	515551C	_	
Gain Correct	Programing		
Ŀ <	RF-ESpark	+ 0	
Q: 4	HPM/	+ 0	

Figure 84 LimeSuiteGUI module menu to select FPGA programing tool

New window appears, as shown in the Figure 85.

Programming	×
Open File: ???	
Program 0 %	
Device: Programming mode:	
Altera FPGA V Bitstream to FPGA V	

Figure 85 FPGA programing tool interface

Software loads raw binary files (*.rpd) [link] to FPGA and it offers couple options to do that, see *Figure* 86.

	Programming	
	Open	File: ???
	Program	0 %
	Device:	Programming mode:
	Altera FPGA 🛛 🔫	Bitstream to FPGA 🛛 👻
		Bitstream to FPGA
U		Bitstream to Flash
1		Bitstream from Flash

Figure 86 FPGA programing options

Select **Bitstream to FLASH programming** mode. This function loads selected *.rpd file from PC to external FPGA FLASH memory. Select required bitstream file by clicking **Open** and initiate FLASH memory programing by clicking on **Program**.

The new message will come up when the programing is finished, as shown in Figure 87.

Figure 87 Successfully FPGA programing message (bytes shown may differ)

After writing new bitstream to Flash memory, it can be loaded to FPGA by changing **Programing mode** to **Bitstream from Flash** and pressing **Program**. New bitstream will be loaded to FPGA. Each time board is powered up, FPGA bitstream is loaded from FLASH automatically.

5.4.2 Uploading FPGA gateware to FLASH memory using JTAG Cable

For the first time use board can be programmed using JTAG header J26. This procedure requires two computers (LimeSDR-QPCIe board inserted into PCIe slot on computer #1 and Quartus Prime software running on computer #2).

- Insert LimeSDR-QPCIe board into computer #1. Make sure that computer is turned off while inserting board.
- Connect one end of download cable (e.g Altera USB Blaster) to LimeSDR-QPCIe board J26 connector and other end to USB port on the computer #2 running Quartus Prime software.
- Turn on computer #1 and interrupt the boot sequence to bring up the BIOS System Setup interface.
- Run Quartus Prime software in computer #2 and select Tools \rightarrow Programmer
- Click Hardware Setup.. button and select your download cable, click Close (see Figure 88).

lardware Settings JTAG	Settings		
Select a programming hardwa ardware setup applies only to	re setup to use when pothe current programm	programming devic ner window.	es. This programming
Currently selected hardware: Available hardware items	USB-Blaster [USB-0]	•
Hardware	Server	Port	Add Hardware
USB-Blaster	Local	USB-0	Remove Hardware

Figure 88 Selecting programming hardware

- Click Add File.. and select *.jic file (see options below):
 - a. Pre compiled bitstream can be found in gateware/LimeSDR-QPCIE_lms7_trx_bs
 - b. If you have followed project compilation instructions and generated your own bitstream then your file is located in project directory /output_files.
- Apply settings as in Figure 89 and click Start.

Programmer - H:/ File Edit View Pr	working_dir/altera/LimeSD ocessing <u>T</u> ools <u>W</u> indow	R-PCIE/LimeSDR-PC	CIE_Ims7_trx/Lime	SDR-PCIE_Ims7	_trx - LimeSDR	-PCIE_Im	s7_trx - [C	Chain2.cdf]*	Search	- C	× נ
🚖 Hardware Setup	USB-Blaster [USB-0]			Mode:	JTAG		-	Progress:			
Enable real-time ISP	to allow background program	ming when available									
Mu Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	Erase	ISP CLAMP
■ ¹ Stop	Factory default SFL image output_files/LimeSDR	EP4CGX30CF23 EPCS64	003CCA5D 56F3C7FB	FFFFFFF	N						
Auto Detect											
Add File											
Change File	<										>
Add Device											^
1 ¹¹ Up	EPCS84										
	•										~

Figure 89 Adding programming file

- After successful programming turn off computer #1.
- FPGA boots from programmed FLASH memory automatically when computer #1 is turned on.