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1
Introduction

Power amplifiers (PA) are nonlinear devices and their linearization is highly desired for a number of
reasons.  In  case  of  RF  PAs,  linearization  improves  power  efficiency  and  subsequently  reduces
running cost of the wireless infrastructure.

Considering  the  PA  performance  for  a  given  air  interface,  ACPR  and   EVM  are  the  key
considerations  to  provide support  for  sophisticated  modulation  schemes,  multicarrier  signals and
high modulation bandwidths.

Here,  we present  the  Lime  solution  for  PA linearization  based on adaptive  digital  predistortion
(ADPD) and crest factor reduction (CFR).



2
Lime ADPD Structure

2.1 Indirect Learning Architecture

The simplified block diagram of an indirect learning architecture is given in  Figure 1. Please note
that RF part in both TX (up to PA input) neither in RX (back to base band frequency) paths is shown
for simplicity.

Delay line compensates ADPD loop (yp(n) to  x(n)) delay. Postdistorter is trained to be inverse of
power amplifier. Predistorter is simple copy of postdistorter. When converged:

(n)=0, yp(n)=y(n) => x(n)=xp(n),

hence, PA is linearized.

Figure 1: Indirect learning architecture



2.2 Complex Valued Memory Polynomial

LimeADPD algorithm is based on modelling nonlinear system (PA and its inverse in this case) by
complex valued memory polynomials which are in fact cut version of Volterra series which is well
known as general nonlinear system modelling and identification approach. In this particular case “cut
version ” means the system can efficiently be implemented in real life applications.

For a given complex input:

x (n)=xI( n)+ j xQ(n ) ,

complex valued memory polynomial produces complex output:

y (n )= y I (n )+ j yQ(n ) ,

y (n )=∑
i=0

N

∑
j=0

M

wij x (n−i)e( n−i ) j

where:

w ij=a ij+ j b ij ,

are the polynomial coefficients while  e(n) is the envelop of the input. For the envelop calculation,
two options are considered, the usual one:

e (n)=√x I(n )2+xQ(n )2
,

and the squared one:

e (n)=xI (n)
2
+ xQ( n)

2

.

Usually, squared one is used in ADPD applications since it is simpler to calculate and in most cases
provides even better results.

In the above equations, N is memory length while M represents nonlinearity order. Hence, complex
valued memory polynomial can be taken into account both system memory effects as well as the
system nonlinearity.

2.3 LimeADPD Equations

Based on discussions  given in  previous  sections  and using signal  notations  of  Figure 1,  ADPD
predistorter implements the following equations:

yp (n)=∑
i=0

N

∑
j=0

M

wij xp(n−i )ep (n−i )j

, 

xp(n)=xpI(n )+ j xpQ(n ) ,

ep (n)= xpI (n )
2
+xpQ (n)

2
,
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while postdistorter does similar:

y (n )=∑
i=0

N

∑
j=0

M

wij x (n−i)e( n−i) j

,

x (n)=xI( n)+ j xQ(n ) ,

e (n)=xI (n)
2
+ xQ( n)

2
.

Note that predistorter and postdistorter share the same set of complex coefficients wij. Delay line is
simple and its output is given by:

u(n )=yp(n−nd ) .

2.4 Training Algorithm

ADPD training algorithm alters  complex valued memory polynomial  coefficients  wij in  order  to
minimise the difference between PA input  yp(n) and  y(n), ignoring the delay and gain difference
between the two signals. Instantaneous error shown in Figure 1 is calculated as:

ε ( n)=√(uI (n )− yI (n ))
2+(uQ(n )− yQ(n ))

2

.

Training is based on minimising Recursive Least Square (RLS) E(n) error:

E(n )=
1
2
∑
m=0

n

λn−m ε (m)2 , λ<1
,

by solving linear system of equations:

∂E(n )

∂ akl

=0 ,
∂ E(n )

∂bkl

=0 ; k=0,1 , .. . , N ; l=0,1 , .. . ,M
.

Any linear equation system solving algorithm can be used. Lime ADPD involves LU decomposition.
However, iterative techniques such as Gauss – Seidel and Gradient Descent have been evaluated as
well. LU decomposition is adopted in order to get faster adaptation and tracking of the ADPD loop.
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3
Peak to Average Power Ratio Reduction
(Crest Factor Reduction) 

3.1 Motivation for Peak to Average Power Ratio Reduction 

Modern modulation schemes (LTE, 5G NR and similar) generate signals which inherently contain
frequent and large peaks in time domain.  In the presence of high Peak to Average Power Ratio
(PAPR), PAs must be heavily backed off and/or further linearized by DPD. The efficiency of DPD
algorithms themselves is also affected by high PAPR.

The solution which helps DPD to compensate PA distortions more efficiently is to deal with the
signals with reduced PAPR. In this case, it is possible to increase transmitted signal average power,
avoid  PA  operation  in  non-linear  region  and  consequently  improve  PA  energy  and  spectral
efficiency. 

The utilization  of  PAPR reduction  techniques  in  modern telecommunication  systems becomes  a
“must have” option, at least at BTS side.

NOTE: Peak to Average Power Ratio Reduction (PAPR) is also known as Crest Factor Reduction
(CFR). The Crest Factor Ratio (CFR) is defined as a ratio between the signal magnitude maximum
value and the signal average value:

CFR=
‖s (n )‖max

srms

Peak to Average Power Ratio (PAPR) is defined as:

PAPR=
‖s (n)‖max

2

s
rms

2

 or  

PAPRdB=10 log10

‖s (n)‖max
2

s
rms

2
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3.2 Peak Windowing Method 

Hard Clipping (HC) technique cuts the peaks when the envelope |x(n)| of the complex signal  x(n)
exceeds user selectable threshold level Th:

y (n )=c (n )x (n )

c (n )={
Th

|x (n )|
,|x (n )|>Th

1,|x (n )|≤Th

HC is quite simple. However it produces high signal distortion due to hard clipping. Undesirable side
effects of HC include in-band signal distortion which is measured by Error Vector Magnitude (EVM)
and out-band signal distortion, measured by Adjacent Channel Power Ratio (ACPR). For that reason,
we have adopted Peak Windowing (PW) algorithm for PAPR reduction. In PW, the large signal
peaks are multiplied with a windowing function to smooth the sharp edges at clipping points. In fact,
the above clipping coefficients c(n) are replaced by b(n):

b(n )=1− ∑
k=−∞

k=∞

(1−c( k ) )w (n−k )

where w(n) is some symmetrical windowing function (Hann’s for example). 

b(n )=1− ∑
k=−∞

k=∞

(1−c( k ) )w (n−k )≤c (n)

The difference  between  c(n) and  b(n) is  minimized  by choosing narrow window lengths  which
results in lower EVM degradation. However, if clipping operation happens frequently, neighboring
correction windows overlap and the difference between c(n) and b(n) becomes larger. 

For LTE standards, usually 30.72 MS/s sample rate is used. CFR block itself runs at 122.88 MHz
clock frequency, i.e. four times the data rate in order to bust hardware DSP blocks processing power.
Of  course,  these  frequencies  can  easily  be  changed  to  conform  to  any  other  similar
telecommunication standard.

The implementation of PW consists of several stages. The PW processing operations are depicted in
Figure 2.a. 

To determine the envelope  e(n)=|x(n)|,  complex I/Q input components are squared, summed and
square-rooted. The envelope e(n) is then compared to the threshold level Th. 

If the magnitude of  e(n) is greater than threshold  Th, clipping coefficient  c(n) is calculated as the
value of Th divided by e(n). Otherwise, c(n) value is set to one.

Peak search block is introduced in PW processing stage to find local minimum values of the signal
c(n). If the input sample is not local minimum, then the output of Peak search block (signal cp(n)) is
set to one. 
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Figure 2: (a) Peak windowing architecture  (b) Peak search block and  (c) Correction bock

Figure 2.a shows the architecture of PWFIR filter. PWFIR consists of feed-forward (PWFIR1) and
feedback (PWFIR2) sub-filters.

PWFIR takes input signal  v(n) and generates 1-b(n). Negative values of v(n) are replaced by zeros
before driving the rest of the filter. The sequence b(n) is gain correction of the input sequences xI(n)
and xQ(n). 

Prior to applying the correction,  xI(n) and  xQ(n) are properly delayed to compensate for the delay
(latency) introduced by the implementation of PWFIR and other CFR preprocessing stages. Hence,
CFR output y(n) is constructed as shown in Figure 2.c.

In order to reduce overlapping, the feedback structure (PWFIR2) is introduced.  The feedback path
adjusts the next filter input value. Looking forward to when clipped input value reaches the center
tap (Figure 2.a),  the contribution  of all  previous  input  values  (between first  and center  tap)  are
calculated and used for correction of the next input value. At the time when incoming clipped signal
reaches the unity weighted center tap, the contributions from all previous values have already been
compensated.  This reduces the EVM degradation when successive peaks in  cp(n) occur within the
period shorter than half of the window length.
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Figure 3: CFR algorithm in action. Bottom graph gives c(n), cp(n) and b(n), top graph shows Th, e(n)=|x(n)| and
envelope of the CFR output |y(n)|.

As mentioned before, PWFIR filter  structure is divided into two parts. PWFIR1 produces output
signal 1-b(n) while PWFIR2 generates the feedback signal f(n) (Figure 2.a). For the implementation,
we have chosen Hann windowing function:

w (k )=
1
2 (1−cos(2 π

k
L−1

)) ,0≤k≤L−1

PWFIR is designed to implement 1 <= L <= 40 tap filters where the filter length  L and the filter
coefficients w(k) are easily software programmable.

The architecture of PWFIR filter is based on multiply-and-accumulate (MAC) circuitry.

The architecture is area optimized. The number of utilized multipliers is reduced by multiplexing
input data and operating the block at the clock frequency which is four times higher than the sample
rate. PWFIR operates at the clock frequency of 122.88 MHz while input and output data rates are
both equal to 30.72 MS/s. 

The architecture of CFR FIR filter  is  further optimized by exploiting  the fact  that  the filter  has
symmetrical window coefficients. The required number of multiplications is reduces by factor of 1/2.
Consequentially, the number of FPGA DSP blocks used for the filter implementation is also reduced.
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Figure 4: The architecture of PWFIR1 (a) and PWFIR2 (b) modules 

The detailed architecture of PWFIR1 is given in Figure 4.a. The coefficients are indexed from 0 to
19. Whenever the condition is true, the coefficient at index j is determined by following equation.
Otherwise, the coefficient is set to zero.

hPWFIR1( j)=w( j−(20−[ L+1
2 ]))

20−[ L+1
2 ]≤ j≤19

PWFIR2 architecture is given in  Figure 4.b. It provides up to 20 programmable filter coefficients
which are stored in the register array and indexed from 0 to 19. The coefficients of PWFIR2 are
determined by following equation whenever condition is met. Otherwise, the coefficient value at
index j is set to zero.

hPWFIR2( j)=w([ L+1
2 ]+ j)

0≤ j≤[ L
2 ]−1
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4
Implementation Platform

ADPD and CFR algorithms  are  implemented  using  LimeSDR-QPCIe  board,  a  high  level  block
diagram of which is shown in Figure 5. LimeSDR-QPCIe board has a lot more options than shown
(two LMS7002M chips, USB interface, GPS receiver, …). LMS7002M itself is 2T-2R RF IC. For
clarity,  Figure   shows  the  minimum  hardware  options  required  to  illustrate  the  LimeADPD
implementation. Regarding the implementation, the same signal names as in Figure 1 are used here.

DPD operates at 122.88 MHz clock while its input/output sample rates are 61.44 MS/s. Interpolation
block is  used to  double usual LTE sample rate  of 30.72 MS/s before driving DPD block. DPD
sample rate of 61.44 MS/s (or higher) is required if we want to cancel at least IMD3 products in case
of 20 MHz modulation.

Figure 5: ADPD implementation based on LimeSDR-QPCIe board
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For the development or demo, test  waveform is uploaded first and played from the WFM RAM
Block implemented using Altera Cyclone V FPGA resources. More importantly, the same FPGA
also implements both DPD and CFR modules. 

Initially, predistorter is bypassed i.e. ypI=xpI, ypQ=xpQ. Predistorter has provision for SPI in order to
update the coefficients during the training. Signals  xp,  yp and  x are captured using Data Capture
RAM Blocks implemented also using FPGA resources. 

Captured  data  is  made  available  to  CPU  (Intel  Motherboard)  Core  via  PCIe  interface. FPGA
implements  PCIe  and  other  glue  logic  required  to  interconnect  LimeSDR-QPCIe  on  board
components including two LMS7002M ICs to the CPU Core.

CPU  implements  postdistorter  block,  delay  line  and  the  rest  of  training  algorithm.  After  each
adaptation step, CPU updates predistorter coefficients via SPI/PCIe interface.

Besides, CFR filter  order,  filter  coefficients  and CFR threshold are configured through the same
SPI/PCIe interface. 
PC/GUI implements graphical display for demo and debugging purposes. GUI is capable to show
important ADPD signals in FFT (frequency), time and constellation (I vs Q) domains. 

In the real applications, WFM and xp Capture RAM blocks are not required. The algorithm needs
only  yp and  x  as shown in Chapter  2. CPU Core performs both ADPD adaptation,  as explained
above,  and  base  band  (BB)  digital  modem  functions  which  are  application  specific,  LTE  for
example.

As shown in Figure 5, frequency conversion from BB to RF is performed by LMS7002M transmitter
chains. Frequency down conversion from RF to BB is implemented by only one LMS7002M receive
chain dedicated to ADPD, i.e. one receiver of the available RF RX chains is allocated as ADPD
monitoring path. In case of MIMO applications, the same ADPD monitoring path is used as time
sharing recourse to linearize multiple PAs which saves power consumption as well as on board RF
resources.

Regarding data converters, LMS7002M on chip 12-bit DACs and ADCs are used. The data rate at
LimeLight interface is 61.44MSps.

In order  to increase the capacity  of  the radio link,  2x2 MIMO transceiver  is  implemented.  One
transceiver  IC is  used  to  implement  two MIMO transmitters.  In  each of  the  transmit  channels,
separate DPD, CFR and low-pass FIR filter blocks are implemented. Another transceiver IC is used
to implement two regular MIMO receivers.

In case of MIMO, single ADPD monitoring path is used as time shared resource to linearize multiple
PAs which saves power consumption as well as on board RF resources.

CFR block has provision of changing the number of FIR filter taps L in the range 1 <= L <=  40. 

Using the same interface, clipping threshold can be set to 0 <= Th <= 1. It is floating point number.
The value of 0 is equivalent to “CFR power down” while 1 corresponds to “CFR bypass”.

The  interpolation/decimation  option  can  be  enabled  or  disabled.  The  choice  is  related  to  the
modulation bandwidth as shown later.
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CFR output is filtered by on-FPGA digital low-pass post-CFR FIR filters (Figure 5). These filters are
very frequency selective and efficiently remove out-of-band unwanted products generated by BB
digital modem as well as CFR PW method itself.

We have implemented two CFR blocks for both transmitted channels. The 40-tap PWCFR module
operates at 122.88 MHz clock frequency.  

If interpolation control signal is zero (see Figure 5) the data rate of CFR input signal samples, which
come (from WFM RAM) to CFR input is 30.72 MSps. Therefore, the PWCRF operates at the clock
frequency level which is 4 times greater then processing data rate. In this case, the data interpolation
(using up-conversion of factor of 2) is used after CFR and post-CFR FIR blocks (see Figure 5). The
number of taps in these filters is 40. The order  L is in the range 1 <= L <= 40. The predistorter,
external ADCs and DACs operate at rate of 61.44 MHz.

If interpolation control signal is equal to equal to one (Figure 5), interpolation (using up-conversion
of factor of 2) is used in front of CFR and post CFR FIR blocks. (see Figure 5). In this case, the data
rate of signals processed by CFR and post-CFR FIR blocks is equal to 61.44 MSps. Therefore, the
PWCFR operates at the clock frequency level which is only 2 times greater then processing data rate.
The  data  interpolation,  located  after  the  CFR and post-CFR FIR blocks,  is  now bypassed.  The
number of taps in the CFR and post-CFR low-pass filters is limited to 20. Therefore, the L is in the
range 1 <= L <=  20.
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5
LimeSDR-QPCIe Board Programming 

This Section describes how to program LimeSDR-QPCIe board.

5.1 Uploading FX3 Firmware to SPI FLASH Memory 

The LimeSDR-QPCIe FX3 firmware source code, required USB drivers and software application
CyControl.exe are available at:

https://github.com/myriadrf/LimeSDR-QPCIe_FX3_FW 

The compiled FX3 firmware (the LimeSDR-QPCIe_fx3_fw.img) is at:

 https://github.com/myriadrf/LimeSDR-QPCIe_FX3_FW/tree/master/src/Debug

In order to upload the compiled FX3 firmware into the board FLASH memory, please, follow the
procedure described below. 

 The procedure requires a computer and external 12V power supply for the LimeSDR-QPCIe.
The LimeSDR-QPCIe board is positioned outside the PC.

 The Cypress drivers must be installed first on computer.
 The  connector  J28  (on  LimeSDR-QPCIe  board)  is  open  and  external  power  supply  is

provided to the board. The USB3 microcontroller boots-up into bootloader mode.
 Short the jumper J28 and connect LimeSDR-QPCIe board to the PC using USB 3.0 port.
 Start “CyControl.exe” application and select Cypress USB BootLoader.
 After entering into boot loader mode, there are two ways of uploading the firmware to USB3

microcontroller: using SPI FLASH memory or internal RAM memory. Choose SPI FLASH
memory option by pressing the menu command Program -> FX3 -> SPI FLASH. 

 In the status bar you will see Waiting for Cypress Boot Programmer device to enumerate....
and after some time window will appear. 

 Select firmware image file (the LimeSDR-QPCIe_fx3_fw.img) and press Open. Status bar of
the USB Control Center application will indicate Programming of SPI FLASH in Progress….
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 This message will change to the Programming succeeded after FLASH programming is done.
The USB3 microcontroller will boot from FLASH memory after every power-on.

 Disconnect the board from computer. 

5.2 PCIe IP core generation

Before compiling the FPGA gateware bitstream, the PCIe Xillybus IP core has to be first generated
and downloaded. 

This chapter describes all steps and parameters required to generate Xillybus PCIe core.

 Xillybus requires filling up free registration form in order to download generated core. Go to
link  http://xillybus.com/ipfactory/signup,  fill  required fields and confirm registration via
received email.

 After successful registration, go to IP core Factory page link and click Add New Core.
 Select option PCIe core and press Next. 
 Choose the IP core's Name, for  Target device family select  Intel  Cyclone V, select  Demo

bundle settings; for operating system select Linux and Windows. Press Create! button.
 After new core creation is done, change the settings as specified in the Table 1.
 After specifying all IP core parameters from Table 1 click Generate core. 
 Check core status and download it when available.

Table 1:  Xillybus PCIe IP core settings

Name Direction Data
width

Expected
BW

Auto
set

Details

xillybus_stream0_read_32
Upstream
(FPGA to host)

32 bits 395 MB/s No Asynchronous, 512 x 16 kB
= 8 MB 
Data acquisition / playback

xillybus_stream0_write_3
2

Downstream
(host to FPGA)

32 bits 395 MB/s No Asynchronous, 512 x 16 kB
= 8 MB 
DMA  acceleration:  8
segments x 512 bytes 
Data acquisition / playback 

xillybus_control0_read_32
Upstream
(FPGA to host)

32 bits 1 MB/s Yes General purpose

xillybus_control0_write_3
2

Downstream
(host to FPGA)

32 bits 1 MB/s Yes General purpose

xillybus_mem_8
Upstream
(FPGA to host)

8 bits 102.400
kB/s

Yes Address/data  interface  (5
address bits)

Downstream
(host to FPGA)

8 bits 102.400
kB/s

Yes Address/data  interface  (5
address bits)

xillybus_stream1_read_32
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Upstream
(FPGA to host)

32 bits 395 MB/s No Asynchronous, 512 x 16 kB
= 8 MB 
Data acquisition / playback

xillybus_stream1_write_3
2

Downstream
(host to FPGA)

32 bits 395 MB/s No Asynchronous, 512 x 16 kB
= 8 MB 
DMA  acceleration:  8
segments x 512 bytes 
Data acquisition / playback

xillybus_stream2_read_32
Upstream
(FPGA to host)

32 bits 395 MB/s No Asynchronous, 512 x 16 kB
= 8 MB 
Data acquisition / playback

xillybus_stream2_write_3
2

Downstream
(host to FPGA)

32 bits 395 MB/s No Asynchronous, 512 x 16 kB
= 8 MB 
DMA  acceleration:  8
segments x 512 bytes 
Data acquisition / playback

5.3 FPGA gateware bitstream generation

The LimeSDR-QPCIe DPD gateware project is available at:

https://github.com/myriadrf/LimeADPD/

tag v21.07.0

Download  the  project  from  specified  site.  In  order  to  generate  LimeSDR-QPCIe-
lms7_trx_HW_1.2.jic file follow the procedure described as: 

 The Xillybus IP compressed file is first downloaded from Xillybus site. The compressed file
contains files xillybus.v and xillybus_core.qxp.

 Place file xillybus.v to Quartus project directory limesdr-qpcie_xillybus_core/
 Place file xillybus_core.qxp to Quartus project directory limesdr-qpcie_xillybus_core/
 Open Quartus LimeSDR-QPCIE_lms7_trx project.
 To recompile project, press Processing → Start Compilation.
 When compilation is finished, the  LimeSDR-QPCIe-lms7_trx_HW_1.2.jic file is located in

gateware project directory /output_files

5.4 Uploading FPGA gateware bitstream to FLASH memory 

 This procedure requires two computers (LimeSDR-QPCIe board inserted into PCIe slot on
computer #1 and Quartus software running on computer #2).

 Besides, Altera USB Blaster is required.
 Insert LimeSDR-QPCIe board into computer #1. Make sure that computer is turned off while

inserting board.
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 Board is  programmed using JTAG header  J26.  Connect  one end of download cable  (e.g
Altera USB Blaster) to LimeSDR-QPCIe board J26 connector and other end to USB port on
the computer #2 running Quartus software.

 Turn on computer #1 and interrupt the boot sequence to bring up the BIOS System Setup
interface.

 Run Quartus software in computer #2 and select Tools → Programmer
 Click Hardware Setup.. button and select your download cable, click Close
 Click Add File.. and select *.jic file 
 Pre compiled bitstream can be found in DPD/gw/LimeSDR-QPCIe-lms7_trx_HW_1.2.jic
 If  you  have  generated  your  own bitstream then  your  file  is  located  in  gateware  project

directory /output_files.
 Select  Program/configure and click  Start. After successful programming turn off computer

#1.
 FPGA boots from programmed FLASH memory automatically when computer #1 is turned

on.

5.5 LimeSuiteGUI installation

The LimeSuiteGUI source code dedicated to DPD demonstration is available at: 

https://gitlab.com/myriadrf/lime-suite  

branch DPD_LimeSDR-QPCIe_Stable 

Please download LimeSuiteGUI source code from specified Gitlab branch and in order to install
software follow instructions described at: 

https://wiki.myriadrf.org/Lime_Suite
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6
CFR and DPD User Guide

6.1 The Hardware Configuration

For  DPD  demonstration  two  transceiver  channels  are  implemented  in  LimeSDR  QPCIe  board
(named  with  channels  A  and  B).  Also,  two  power  amplifiers  are  requited  belonging  different
transmitting paths. 

Follow the steps explained below:

 The  LimeSDR  QPCIe  channel  A  output,  the  LimeSDR  QPCIe  LMS#1  TX1_1  port,  is
connected to channel A PA#1 input. 

 For channel B, port LMS#1 TX2_1 port is used and it is connected to corresponding PA#2
input.

 The output of one of the PAs is via RF attenuator connected to spectrum analyzer RF input.
The other PA output can be terminated with 50 Ohms.

 PA coupling outputs are over 10dB-20dB RF attenuators fed to two LimeSDR QPCIe receive
inputs. 

 The on-board analogue multiplexer is used for selection of PA coupling output signals. The
multiplexer input, the U.FL RF1, is dedicated for channel A receive input, while the U.FL
RF3 is used as channel B input. 

 The analogue multiplexer output U.FL port RFC is connected to the U.FL LMS#1 RX1_W,
which is used as DPD monitoring input. 

6.2 LimeSuiteGUI settings

The CFR and DPD control is implemented in LimeSuiteGUI application. Follow the steps 1 to 8: 

1. Copy the content of folder DPD/sw (the subfolders and QADPDconfig.ini) into folder that
belongs to LimeSuiteGUI installation:

<LimeSuite install folder>/LimeSuite/build/bin
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2. Open the terminal in this folder.

3. Start the LimeSuiteGUI application with sudo:

sudo ./LimeSuiteGUI

4. Make the connection with the LimeSDR QPCIe board Options -> Connection settings. Select
the LimeSDR QPCIe board.

5. Read the LMS7002M .ini configuration file LMS1settings/LMS1settings_20_751.ini.

6. In LimeSuiteGUI open the Calibrations tab, press buttons Calibrate Tx, then Calibrate Rx for
static I/Q calibration. 

7. Open  the  window  Board  related  controls through  Modules  ->  Board  Controls.  When
window is opened, read the FPGA configuration file (with extension .ini2) which contains the
CFRs settings and post-CFR FIR filter configuration. To do this press  Read settings button
and  choose  the  file  dedicated  to  10MHz  LTE  waveform  –
FPGAsettings/FPGAsettings_10MHz.ini2.

8. Now, select the test waveform by  Modules->FPGA controls, then select the 10MHz LTE
waveform  lms7suite_wfm/LTE_DL_TM31_10MHZ.wfm.  Check  MIMO option  and  press
button Custom to start the waveforms.

6.3 Board Related Controls

The Crest factor reduction (CFR) controls have been implemented in the  Board related controls
window, which is the part of  LimeSuite GUI (Figure 6). The window provides:

 Selection of the transmit channels A or B
 Change of PWFIR filter order, in the range from 1 to 40.
 Setting the clipping threshold
 To change the coefficients of post-CFR FIR filter.
 To turn on/off the LimeNET internal PAs and DCDCs (only if  LimeNET internal PAs are

used)

18



Figure 6: The Board related controls dialog

The radio buttons A_CHANNEL and B_CHANNEL select one of the transmit paths: A or B (Figure
6). 

Two  different  CFR blocks  and  accompanying  post-CFR FIR filters  in  the  FPGA gateware  are
dedicated to different transmit paths A and B. Therefore, before any modification of CFR parameters
is made, the transmit path must be selected using the previously specified radio buttons. 

CFR parameters for each of transmit paths include:

 Bypass – when is checked, the CFR is bypassed
 Interpolation has possible values 0 and 1 (Figure 6). The value 1 selects the interpolation in

front of CFR block. (see Figure 5). In this case the data rate of signals entering the CFR is
61.44 MSps. Otherwise, when 0 value is chosen, the interpolation is used after CFR and post-
CFR FIR blocks. In this case the data rate of signals is 30.72MSps. 

 CFR order is the integer value representing the CFR PWFIR order. When Interpolation=0 the
CFR order  maximum is  40,  otherwise,  when control  signal  interpolation  =  1,  maximum
PWFIR order is 20.

 Threshold is the floating point number in the range from 0.0 to 1.0, determining the clipping
threshold.  The  value  is  normalized  to  input  signal  amplitude  maximum.  The  parameter
Threshold determines the amount of PAPR reduction. For example, the value of 0.7 reduces
the  input  signal  PAPR by  3dB.  When  value  of  1.0  is  chosen,  the  clipping  operation  is
bypassed. 

 Gain is the digital gain following CFR block. The default value is set to 1.0.

When interpolation or CFR order values  are  changed in the window, the new Hann windowing
coefficients are automatically calculated and are programmed to the dedicated CFR registers located
in FPGA gateware. 
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The recommended CFR configuration for different LTE bandwidths is given in the Table 2.

Table 2: The recommended CFR configuration for different LTE bandwidths

LTE bandwidth [MHz] CFR order Interpolation Threshold
05 21 0 0.75*
10 17 0 0.75*
15 17 1 0.75*
20 13 1 0.75*

*Note: If the power of the input signal is additionally backed-off by LTE stack settings, the threshold
given in the Table 2 should be re-calculated and modified. 

As previously mentioned, the low-pass post-CFR FIR filter follows the CFR block (Figure 5). The
options for filter  coefficients  reading end programming are provided. When  Coeff. button in the
Board related controls window is pressed, the post-CFR FIR filter coefficients are read from FPGA
gateware registers and displayed in the new window. New post-CFR FIR coefficients can be loaded
from .fir file and displayed in the window. For different LTE waveforms (5MHz, 10MHz, 15MHz
and 20MHz)  the  corresponding .fir  files  are  provided in  folder  in  folder  <LimeSuiteGUI install
folder>/LimeSuite/build/bin/FIRcoefficients.  After  pressing OK button,  the window is closed and
new coefficients are programmed into the FPGA gateware registers. Since different post-CFR filters
exist for different channels, it is required to select the transmitting channel before changing filter
coefficients. For this purpose the radio buttons A_CHANNEL/B_CHANNEL are used. 

The post-CFR filter length depends on Interpolation. When interpolation is 0, the data rate of post-
CFR FIR signals is 30.72MSps (see Figure 5). In this case the post-CFR FIR order is 40. Otherwise,
when value 1 is chosen, the interpolation is done before the CFR and post-CFR FIR blocks. In this
case, the data rate of signals is 61.44 MSps and filter order maximum is equal to 20. 

Before waveform bandwidth is changed it is required to change both post-CFR filter coefficients and
CFR parameters, including the CFR filter length and interpolation.

To save or read gateware configuration the Board related control window (Figure 6) provides three
buttons: 

 Read settings which reads the .ini2 file, updates the configuration shown in the window and
also, automatically programs the FPGA gateware (the CFR blocks and post-CFR FIR filters),

 Refresh button  reads  the  configuration  which  is  already  programmed  in  the  FPGA  and
updates the configuration in the window,

 Save settings is used to read the configuration from FPGA and save it into the .ini2 file

Beside the CFR and post-CFR FIR configuration, the  Board related controls window controls the
internal LimeNET Base station PAs and DC/DC convertors. Namely, the LimeNET Base station PAs
and DCDCs can be turned on/off programmatically. 

The check buttons  DC/DC ChA and ChB (Figure 6) are used to switch on/off the LimeNET BS
DC/DC convertors, which provide power supply to PAs (only if LimeNET internal PAs are used).
Additionally, the LimeNET BS PAs can be turn on/off using PA ChA and ChB check buttons. Note
that when the control is checked, the DCDC or PA is turned on. 
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6.4 DPD Viewer Window

Figure 7: DPDViewer: ADPD signals before training

PC/GUI implements graphical display for demo and debugging purposes. GUI is capable to show
important ADPD signals in FFT (frequency), time and constellation (I vs Q) domains.  The DPD
viewer window is displayed through Modules -> DPD Viewer.

Figures 7 and 8 show important ADPD signals before and after the algorithm convergence. Signals
are captured by GUI executed by CPU Core.

ADPD parameters given in the QADPD setup part of the window are: 

 N(mem.) -  the DPD model memory order, maximum value N=4.
 M (nonl.) – the nonlinearity order, maximum value M=3,
 Lambda – the RLS forgetting factor. It is real value less than 1.0.
 Train cycles number of train cycles before new DPD coefficients are programmed
 ND delay  - the DPD delay line length (in range from 74-80)
 Gain – floating point number representing the DPD digital gain. When Gain is obtained by

gain calibration process, the PA output power is maintained at the save power level after
DPD linearization  process  is  performed  compared  to  initial  power.  When  Gain  value  is
chosen to be less than the value derived after Gain calibration, the power at PA output is
increased, as well the amount of distortion. 
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Figure 8: DPDViewer: ADPD signals after training

Before training (Figure 7), predistorter signals yp and xp are equal (plot 1). Signal x as a measure of
PA output is distorted (plot 3). Waveforms y and u are very different (plot 2) which results in huge
error (plot 4) which ADPD has to minimize.

After ADPD training (Figure 8), signal  yp  (plot 1) is predistorted in order to cancel PA distortion
components. x as a measure of PA output is now linearized (plot 3). Excellent match between y and u
waveforms  in  both  time  and  amplitude  scale  (plot  2).  ADPD  error  (plot  4)  is  minimized.
Improvement in PA linearization can be seen by comparing yp and x spectra of plot 3.

The basic operations describing the DPD operations from LimeSuite GUI are as follows:

1. Start the waveforms (running the LTE stack, or loading the test waveform)
2. Select the transmitting channel (A or B)
3. Press Calibrate ND delay button.

Note: Expected values for delay ND are in the range [74-80]. 

Note: If in consecutive DPD calibration procedures, different, random values for ND are obtained,
which are out of specified range, there is a RF reflection or interference. To solve this, check the RF
cables.  The cable  dedicated  for  DPD monitoring  path (from PA’s  coupling  output  to  LimeSDR
QPCIe board) should have strong shield. Else, 10dBm-20dBm RF attenuator should be placed at
LimeSDR QPCIe board receive input, rather than at PA’s coupling output.

4. Press Calibrate gain to determine DPD digital gain.
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Note: If LTE stack is running, the DPD calibration procedure requires the data payload, generated by
connecting mobile phone(s) to BTS and executing Magic Iperf application on both sides.

Note: The DPD digital gain should be in range [1.0-3.0], otherwise, LMS7002M channel A receiver
gain settings must be modified. 

5. In the part of the window Train DPD, press the  Start button, check  Cont. train option and
then select Continuous option.

6. To stop the DPD training process, first press One step, then End button, above.
7. Repeat steps 2-6 for the other channel 

Note: For DPD coefficient reset use  resetCoeff button. The result of this operation is the same as
DPD is bypassed.

When LTE stack is running there is a possibility to just monitor the signals without performing the
DPD training. In this case, the sequence of operations is as follows:

1. Select the channel first (A or B)
2. In the part of the window Train DPD, press the Start button, uncheck Cont. train option and

select Continuous option.
3. To stop monitoring operation, first press One step, then End button.
4. Repeat steps 1-3 for the other channel 
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7  
Application DPDcontrol

The  application  is  dedicated  to  LimeSDR  QPCIe  board.  Before  starting  the  command-line
application, named DPDcontrol, the LMS7002 transceiver chip should be initialized and modulation
waveforms started.

One option to do this is to start Amarisoft  LTE stack. The other option is, using LimeSuiteGUI
application, to load LMS7002M configuration files and run test waveforms.

In the first option, during LTE start-up procedure, two LMS7002M .ini files are automatically loaded
into two transceiver  ICs.  Also,  the .ini2 FPGA configuration file  is  loaded,  containing on-board
FPGA  gateware  configuration,  including  information  regarding  CFRs  and  post-CFR  FIR  filter
coefficients. 

In the second option, used for development or demo, test waveform is uploaded and played from the
on-board WFM RAM Blocks. The LimeSuiteGUI application is used in this case.

1. Open the terminal in the folder which belongs to LimeSuiteGUI installation: 

<LimeSuiteGUI installation folder>/LimeSuite/build/bin

2. Start the LimeSuiteGUI application with sudo:

> sudo ./LimeSuiteGUI

3. Make  the  connection  with  the  board   Options->Connection  settings.  Find  and  select
LimeSDR QPCIe board.

4. Read the LMS7002M .ini configuration file LMS1settings/LMS1settings_20_751.ini. 

5. Open  the  window  Board  related  controls through  Modules  ->  Board  Controls.  When
window is opened, read the FPGA configuration file (with extension .ini2) which contains the
CFRs settings and post-CFR FIR filter configuration. To do this press  Read settings button
and  choose  the  file  dedicated  to  10MHz  LTE  waveform  –
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FPGAsettings/FPGAsettings_10MHz.ini2. When FPGA is initialized, close the Board related
controls window.

6. In LimeSuiteGUI open the Calibrations tab, press Calibrate Tx, then Calibrate Rx.

7. Now, select the test waveform by  Modules->FPGA controls, then select the 10MHz LTE
waveform  lms7suite_wfm/LTE_DL_TM31_10MHZ.wfm.  Check  MIMO option  and  press
button Custom to start the waveform.

Note: if it is required to modify CFR or post-FIR CFR settings, LimeSuiteGUI must be used. Again,
go to Modules-> Board Controls, open Board related controls window. After the CFR settings are
modified, save new configuration into FPGA configuration .ini2 file or replace the existing FPGA
configuration .ini2 file. 

Once the test waveforms are played, the DPDcontrol application can be started.

It is not allowed to use the DPDcontrol application and LimeSuiteGUI at the same time. Therefore,
before starting the DPDcontrol, close the LimeSuiteGUI. 

It is still possible to linearize PAs using DPDcontrol, and then, after closing the DPDcontrol, open
LimeSuiteGUI,  its  DPDViewer window, and check the spectrum of  the PA output  signals.  The
relevant signal is signal x which is a measure of PA output.

The very basic DPDcontrol operations are explained through steps 1-7.

1. Open the terminal in following folder, which belongs the LimeSuiteGUI installation: 
<LimeSuite install folder>/LimeSuite/src/commandmode/

2. Compile the DPDcontrol application:
>make

3. Start the application with sudo:
>sudo ./DPDcontrol

Note: If the application  DPDcontrol is started without any argument, the DPD nonlinearity order
QADPD_M is defined by the value which is last stored in DPDcontrol configuration file.
Please, find the description of storeConfigDPD command below.

Note: If the application is started with an argument, the argument represents the DPD nonlinearity
order -  QADPD_M, which is an integer value in the range from 1 to 3. This parameter should be
stored into DPDcontrol configuration file. Use  storeConfigDPD command after DPD is being
calibrated. 

4. To calibrate DPD parameters (calculate DPD digital gain and ND delay):
>calibrateDPD {1, 2, all}

Note: the argument  all refers to both transmitting channels; available arguments are 1, 2 or all,
particularly for first channel A, second channel named B, or both channels.

Note: Expected values for delay ND are in the range [74 – 80]. 
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If in consecutive DPD calibration procedures, different, random values for ND are obtained, which
are out of specified range, there is a RF reflection or interference. To solve this, check the RF cables.
The cable dedicated  for DPD monitoring  path (from PA’s  coupling output  to board)  must  have
strong shield.  Else,  place  10dBm-20dBm RF attenuator  at  LimeSDR QPCIe board receive  port,
dedicated to DPD monitoring input, rather than at PA’s coupling output.

Note: The DPD digital gain should be in range [1.0-3.0], otherwise change the LMS7002M receiver
gain settings. Open LimeSuiteGUI, in tab RFE modify LNA; in tab RBB modify PGA gain settings.

Note: when running the LTE stack, the DPD calibration procedure requires that the data payload is
generated  by  connecting  mobile  phones  to  BTS  and  executing  MagicIperf  application  on  both
phones.

5. When DPD is calibrated, the DPD training operation is started by:
>startDPD {1, 2, all}

Note: Again, like in previous commands, the argument  all refers to both transmitting channels;
available  arguments  are  1,  2  or  all,  particularly  for  first  channel  A,  second channel  B or  both
channels.

Note:  DPD  training  operation  is  performed  periodically  for  both  transmitting  channels,  the
calculation period is equal to four seconds, just in a few iterations PAs get linearized.

Note: The information about DPD calculation errors obtained by DPD training process can be useful.
The information is displayed or disabled by successive entering the character “l” in command line.

6. To stop DPD training operation use:
>stopDPD {1, 2, all}

7. To stop the application:
>quit

The application DPDcontrol has some additional useful commands which are explained below:

1. The entire command set provided by:
>help

2. To turn on the DCDCs and PAs (only if  LimeNET internal PAs are used):
>startDCDC {1, 2, all}
>startPA {1, 2, all}

3. To turn off the DCDCs and PAs (if LimeNET internal PAs are used):
>stopPA {1, 2, all}
>stopDCDC {1, 2, all}

4. To store the DPD parameters into DPDcontrol configuration file (DPD digital gain and ND
delay,  which  are  determined  by  calibrateDPD;  and  DPD  nonlinearity  order  –
QADPD_M, defined by DPDcontrol application argument), use:
>storeConfigDPD {1, 2, all}
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5. The  DPD  parameters  (DPD  digital  gain,  ND  delay and  QADPD_M)  are  loaded  from
configuration file using: 
>loadConfigDPD {1, 2, all}

Note: When the application DPDcontrol is started, the parameters DPD digital gain and ND delay
are  automatically  loaded  from  DPDcontrol configuration  file.  Also,  when  application  is  started
without arguments, the DPD nonlinearity order QADPD_M is read from configuration file. When it
is started with argument, it represents value of QADPD_M.

6. There is an option to store all calculated DPD coefficients (after training process is stopped
with stopDPD command) into application’s configuration file. 
>storeCoeffDPD {1, 2, all}

7. To read the DPD coefficients from configuration file: 
>loadCoeffDPD {1, 2, all}

8. To read current status of DPD parameters (DPD digital gain, ND delay and QADPD_M), or
status of the PAs and DCDCs for both transmitting channels, use the following command:
>readConfigDPD {1, 2, all}

9. To reset all DPD coefficients:
>resetDPD {1, 2, all}

Note: The result of this command is the same as DPD is bypassed. 
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8
DPD Measured Results 

Hardware setup:

 Rigol spectrum analyzer.
 Ubuntu PC equipped by LimeSDR-QPCIe board. 

For channel A, LimeSDR QPCIe TX1_1 output is connected to power amplifier input; for channel B
port TX2_1 port is used. The output of power amplifier is via RF attenuator connected to spectrum
analyzer RF input. Power amplifier coupling outputs for both transmitter channels are over attenuator
fed to LimeSDR QPCIe inputs. RX1_W is used as DPD monitoring input and it is connected to an
on-board analog multiplexer output U.FL RFC port. The U.FL RF1 multiplexer input is channel A
receive input, while U.FL port RF3 is channel B input.

Data  payload  is  generated  by  connecting  mobile  phone(s)  to  BTS  and  executing  Magic  Iperf
application on both sides. The case when CFR is bypassed is used as the reference point for the final
comparison. In the further measurement points, the CFR block is enabled

Before  implementation  and  measurements,  ADPD  algorithm  has  been  thoroughly  simulated.
Simulation results are omitted from this document for clarity. 

Most importantly, ADPD performance has been measured and the results for two cases are presented
in this Chapter. 

Test Case 1: 

Moderate output power amplifier device Maxim Integrated MAX2612.Psat ~ 19dBm.

10MHz LTE 

RF centre frequency 751MHz.

Test Case 2:

Moderate output power amplifier device Maxim Integrated MAX2612.Psat ~ 19dBm.
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20MHz LTE 

RF centre frequency 751MHz.

Test Case 3: 

10W modulated output power amplifier.

10MHz LTE 

RF centre frequency 751MHz.
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8.1 Test Case 1: 10MHz LTE, Maxim Integrated MAX2612 PA

Power  amplifier:  Psat  ~  19dBm.  RF  centre  frequency  751MHz.   Test  signal:   10  MHz  LTE
waveform .

ADPD Parameters: Nonlinearity order: M1=2, M2=0. Memory order: N1=N2=4.

CFR parameters:  L=17, Th=0.75, Int/Dec=1, PAPR is reduced from 10.32 to 8.34 dB

Figure 9: Signal spectrum before linerization

Figure 10: Signal spectrum after linerization

Before linearization: ACPR = -40.2 dBc;  EVM = 3.2% 

After linearization: ACPR = -51.8 dBc;  EVM = 2.2%

Improvement: D ACPR = 11.6 dB;  DEVM = 1.0% 
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PA output power is preserved at Pout = 6.1 dBm

8.2 Test Case 2: 20MHz LTE, Maxim Integrated MAX2612 PA

Power  amplifier:  Psat  ~  19dBm.  RF  centre  frequency  751MHz.   Test  signal:   20  MHz  LTE
waveform

ADPD Parameters: Nonlinearity order: M1=2, M2=0. Memory order: N1=N2=4.

CFR parameters:  L=13, Th=0.75, Int/Dec=2, PAPR is reduced from 10.6 to 8.3 dB

Figure 11: Signal spectrum before linerization

Figure 12: Signal spectrum after linerization

Before linearization: ACPR = -40.3 dBc; EVM = 3.6%

After linearization: ACPR = -49.6 dBc; EVM = 2.2%

Improvement: D ACPR = 9.3 dB; D EVM = 1.4%.
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PA output power is preserved at Pout=5.8 dBm.

8.3 Test Case 3: 10MHz LTE, 10W modulated output power 
amplifier

The bandwidth of PA is 700-850 MHz. The average output power at 1 dB compression point is 40
dBm at the frequency of 750 MHz. In the measurement setup, the 30 dB attenuator is put between
the output of PA and the RF input of spectrum analyzer.

Before linearization: ACPR=-37.5 dBc, EVM= 3.32 %. 

The measured PA output power was Pout=39.7 dBm and the PAPR=10.3 dBm. 

After  the  PAPR is  decreased  by 2 dBm, by choosing L=19 and Th=0.76,  and the  PA is  being
linearized by DPD: EVM = 2.42 %. ACPR = -50.51 dBc. 

Therefore, ACPR and EVM are improved by 13.01 dBc and 0.9 % respectively, compared to the
results of uncompensated PA.
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9
CFR Measured Results 

Hardware setup:

 Agilent PSA spectrum analyzer.
 Ubuntu PC equipped by LimeSDR-QPCIe board. Runs either Lime Suite GUI or real life

BTS based on Amarisoft LTE stack, depending on test case scenario.
 Win  10  PC  running  Keysight  Vector  Signal  Analyzer  (VSA)  software  for  modulation

analyses. 

In the test cases 1-4 the CFR algorithm is checked against 5MHz, 10MHz, 15MHz and 20MHz 64
QAM LTE modulated signals, with 20MHz being the most challenging one. 

In test cases presented below, the signals are generated in different ways:

 The waveforms are generated using the Test Model 3.1 (E-TM 3.1) test specification, which
applies to most LTE modulation schemes.  The test  waveform is upload into WFM RAM
block of LimeSDR-QPCIe board and played. One of the TX RF outputs is connected to PSA
for the modulation analysis. In the reference point, the CFR block is bypassed. In the further
measurement points, CFR block is enabled. Different CFR options are considered: CFR order
L, threshold Th and interpolation.

 Real BTS is constructed using Linux Ubuntu PC running Amarisoft LTE stack in FDD mode.
This  scenario  checks  the  performance  of  Amarisoft  LTE  stack  working  together  with
LimeSDR-QPCIe hardware.  Antennae are connected to LimeSDR-QPCIe RF ports. One of
the TX outputs is connected to PSA via RF coupler. Data payload is generated by connecting
mobile phone(s) to BTS and executing Magic Iperf application on both sides. The case when
CFR is  bypassed  is  used  as  the  reference  point  for  the  final  comparison.  In  the  further
measurement points, the CFR block is enabled. 
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9.1 Test Case 1: LTE 5MHz
Table 3: CFR Test case 1 results for E-TM 3.1 LTE 5MHz 

E-TM 3.1
LTE 5MHz
Wfm -> QPCIe -> 
PSA 

CFR
L

CFR
Int.

CFR
Th

PAPR
(dB)

EVM
(%)

ACPR
(dBc)

D PAPR 
(dB)

D EVM
(%)

no CFR / / / 10.38 0.91 -56.00 0.00 0.00

CFR 

21 0 0.75 8.12 2.18 -55.00 2.26 1.27
19 0 0.75 8.12 2.12 -55.00 2.26 1.21
17 0 0.75 8.20 2.05 -55.00 2.18 1.14
15 0 0.75 8.42 1.96 -55.00 1.96 1.05

Table 4: CFR Test case 1 results for Amarisoft LTE 5MHz stack

Stack LTE 5MHz 
LTE Stack -> QPCIe -
> PSA 

CFR
L

CFR
Int.

CFR
Th

PAPR
(dB)

EVM
(%)

ACPR
(dBc)

D PAPR 
(dB)

D EVM
(%)

no CFR / / / 10.62 0.61 -56.00 0.00 0.00
CFR 21 0 0.66 8.48 2.06 -55.00 2.14 1.45

9.2 Test Case 2: LTE 10 MHz
 Table 5: CFR Test case 2 results for E-TM 3.1 LTE 10MHz 

E-TM 3.1
LTE 10MHz
Wfm -> QPCIe -> 
PSA 

CFR
L

CFR
Int.

CFR
Th

PAPR
(dB)

EVM
(%)

ACPR
(dBc)

D PAPR 
(dB)

D EVM 
(%) 

no CFR / / / 10.32 0.98 -54.00 0.00 0.00

CFR 

19 0 0.75 8.28 2.28 -54.00 2.04 1.30
17 0 0.75 8.34 2.23 -54.00 1.98 1.25
15 0 0.75 8.38 2.19 -54.00 1.94 1.21
13 0 0.75 8.52 2.12 -54.00 1.80 1.14

Table 6: CFR Test case 2 results for Amarisoft LTE 10MHz stack

LTE Stack 10MHz 
LTE Stack -> QPCIe -
> PSA 

CFR
L

CFR
Int.

CFR
Th

PAPR
(dB)

EVM
(%)

ACPR
(dBc)

D PAPR 
(dB)

D EVM 
(%) 

no CFR / / / 10.74 0.55 -54.00 0.00 0.00 
CFR 17 0 0.66 8.42 2.30  -54.00 2.32 1.75
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9.3 Test Case 3: LTE 15 MHz
 Table 7: CFR Test case 3 results for E-TM 3.1 LTE 15MHz 

E-TM 3.1
LTE 15MHz
Wfm -> QPCIe -> 
PSA 

CFR
L

CFR
Int.

CFR
Th

PAPR
(dB)

EVM
(%)

ACPR
(dBc)

D PAPR 
(dB)

D EVM 
(%) 

no CFR / / / 10.54 1.03 -52.00 0.00 0.00 

CFR 

19 1 0.75 8.34 2.22 -52.00  2.20 1.19
17 1 0.75 8.34 2.17 -52.00  2.20 1.14
15 1 0.75 8.48 2.11 -52.00  2.06 1.08
13 1 0.75 8.48 2.06 -52.00 2.06 1.03

Table 8: CFR Test case 3 results for Amarisoft LTE 15MHz stack

Stack LTE 15MHz 
LTE Stack -> QPCIe -
> PSA 

CFR
L

CFR
Int.

CFR
Th

PAPR
(dB)

EVM
(%)

ACPR
(dBc)

D PAPR 
(dB)

D EVM 
(%) 

No CFR / / / 10.94 0.62 -52.00 0.00 0.00 
CFR 17 1 0.66 8.44 2.19  -52.00 2.50 1.57

9.4 Test Case 4: LTE 20 MHz
 Table 9: CFR Test case 4 results for E-TM 3.1 LTE 20MHz 

E-TM 3.1
LTE 20MHz
Wfm -> QPCIe -> 
PSA 

CFR
L

CFR
Int.

CFR
Th

PAPR
(dB)

EVM
(%)

ACPR
(dBc)

D PAPR 
(dB)

D EVM 
(%) 

no CFR / / / 10.54 1.15 -51.00 0.00 0.00 

CFR 

17 1 0.75 8.24 2.33 -52.00 2.30 1.18
15 1 0.75 8.24 2.29 -52.00  2.30 1.14
13 1 0.75 8.24 2.22 -52.00 2.30 1.07
11 1 0.75 8.38 2.15 -52.00 2.16 1.00

Table 10: CFR Test case 4 results for Amarisoft LTE 20MHz stack

LTE Stack 20MHz 
LTE Stack -> QPCIe -
> PSA 

CFR
L

CFR
Int.

CFR
Th

PAPR
(dB)

EVM
(%)

ACPR
(dBc)

D PAPR 
(dB)

D EVM 
(%) 

no CFR / / / 11.20 0.60 -52.00 0.00 0.00 
CFR 13 1 0.66 8.42 2.30 -52.00  2.78 1.70
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10
Conclusion

Lime ADPD algorithm has been implemented and verified by measured results.

ADPD is capable of cancelling any distortion above system noise floor, 
DACs -> TX  -> PA -> Coupler -> RX -> ADCs. 

Improvements in ACPR and EVM have been achieved in all cases as shown in Table 11.

Table 11: DPD results summary

Configuration Modulation Psat 
[dBm]

RF centre 
frequency 
[GHz]

ACPR [dBc] EVM [%]
No 
ADPD

With 
ADPD

No 
ADPD

With 
ADPD

Case 1 10 MHz LTE 19 0.751 -40.2 -51.8 3.2 2.2
Case 2 20 MHz LTE 19 0.751 -40.3 -49.6 3.6 2.2 
Case 3 10 MHz LTE 39 0.75 -37.5* -50.5*  3.3 2.4

Compared to the original Peak Windowing algorithm, time-multiplexing is implemented reducing
the number of utilized multipliers. The CFR block operates at 122.88 MHz while data sample rate is
30.72 MS/s. 

Booth multipliers, which were originally realized by FPGA flip-flops and combinatorial logic, are
replaced by FPGA embedded multipliers, reducing the occupied area and increasing the processing
speed. 

The architecture of CFR FIR filter is further optimized having in mind that PWFIR coefficients are
symmetrical. This reduces the number of multiplication operations, and consequentially, the number
of used FPGA DSP blocks. FPGA resources are saved in this way leaving the room for some other
DSP blocks to be added, DPD for example

The novelty not seen in the published literature so far is Peak search block which is introduced in
CFR preprocessing stage to find local minimum values of the signal c(n). Compared to the original
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PW, the difference between local minimum values of the gain correction b(n) and the clipping signal
c(n) is minimized. With this circuit,  the peaks of the output signal envelope are more accurately
constrained to the threshold Th, resulting in lower EVM degradation.

Another important novelty here is utilization of the interpolation and decimation blocks. These are
placed in front of and after the CFR block respectively. Interpolation and decimation helps in getting
better EVM results for the wider modulation formats (15MHz and 20MHz LTE, for example). In
other  words,  this  approach  helps  the  cases  when  the  modulation  edge  approaches  the  Nyquist
frequency. With this option enabled the clipping operation becomes more precise since peaks are
seen better. Adding interpolation/decimation required some modifications in FIR filter architecture
and also in the method of coefficients programming. 

PAPR is increasing as the modulation bandwidth is getting wider. Real LTE stack signal has higher
PAPR than the test model one. Both facts are well known and expected. Due to higher PAPR, digital
gain of LTE stack is backed off by 3 dB not to have digital overload. Consequently, CFR threshold
Th is changed from 0.75 to 0.66. 

Interpolation/decimation makes CFR algorithm almost insensitive to the modulation bandwidth. 

If we take 20 MHz real life LTE stack test as the target and the most challenging case, we can say
that CFR block reduced PAPR from 11.2 dB down to 8.42 dB while degrading EVM from 0.6% to
2.3%. In other words, PAPR is reduced by 2.78 dB while EVM is degraded by only 1.7%.

ACPR is not affected at  all  neither by BB modem nor CFR algorithm thanks to digital  filtering
implemented by FIR blocks.
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11
Revision History

DPD revision history

Date Version Description of Revisions

Jun 25, 2017 1.0 Lime ADPD implemented on LimeSDR-USB board. GUI control has
been  developed.  The  algorithm  functionality  confirmed  by
measurements. 

Sep 07, 2017 2.0 Input data is multiplexed to reduce the number of utilized DSP blocks.
Data rate increased to 61.44 MS/s by adding interpolation block.

Dec 24, 2017 3.0 Lime ADPD is implemented on LimeSDR-QPCIe board. External on
board ADC/DACs are used.

May 25, 2018 4.0 ADPD  on  LimeSDR-QPCIe  switched  to  use  internal  LMS7002M
ADC/DACs and LimeLight digital interface..

Jan 12, 2019 5.0 CFR block added.

Apr 01, 2019 6.0 Command line DPD control with dedicated DPD library functions has
been developed. 

May 12, 2019 7.0 Command line CFR control with dedicated library functions has been
implemented. 

Oct 07, 2019 8.0 Automatic DPD calibration. New methods for calculating DPD digital
gain and ND delay line length.

Mar 30, 2020 9.0 Missed measurement results collected and added to the document.

Apr 22, 2020 10.0 Some test cases remeasured.

Crest Factor Reduction revision history

Date Version Description of Revisions 

Mar 20, 2018 1.0 Initial release. Feasibility study. 

Dec 28, 2018 2.0 System C simulation. CFR algorithm behaviour checked.

Feb 10, 2019 3.0 VHDL coding, simulation. Results confirmed to agree with System C
simulation.

Mar 17, 2019 4.0 Compiling RTL VHDL code for Altera Cyclone V. First measurements
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using LimeSDR-QPCIe board.
Jul 23, 2019 5.0 Booth multipliers (based on flip-flops and combinatorial logic) replaced

by embedded FPGA DSP blocks to save space and bust the processing
power.

Sep 02, 2019 6.0 Peak  search  pre-processing  block  added  to  the  structure.  Improved
behaviour confirmed by both simulations and measurements.

Apr 10, 2020 7.0 Interpolation/decimation added. Obtained measured results accepted and
documented as the best and final so far.  Figures re-imported to look
better.
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